Citation: | S M Hasan Shahriar Rahat, Oluwatunmise Israel Dada, Liang Yu, Helmut Kirchhoff, Shulin Chen. Anaerobic digestion bacteria algae (ADBA): A mathematical model of mixotrophic algal growth with indigenous bacterial inhibition in anaerobic digestion effluent[J]. Journal of Bioresources and Bioproducts, 2025, 10(1): 32-50. doi: 10.1016/j.jobab.2024.12.004 |
[1] |
Adesanya, V.O., Davey, M.P., Scott, S.A., Smith, A.G., 2014. Kinetic modelling of growth and storage molecule production in microalgae under mixotrophic and autotrophic conditions. Bioresour. Technol. 157, 293-304.
|
[2] |
Al-lwayzy, S., Yusaf, T., Al-Juboori, R., 2014. Biofuels from the fresh water microalgae Chlorella vulgaris (FWM-CV) for diesel engines. Energies. (Basel) 7, 1829-1851.
|
[3] |
Aparicio, S., González-Camejo, J., Seco, A., Borrás, L., Robles, Á., Ferrer, J., 2023. Integrated microalgae-bacteria modelling: application to an outdoor membrane photobioreactor (MPBR). Sci. Total Environ. 884, 163669.
|
[4] |
Azari, A., Tavakoli, H., Barkdoll, B.D., Haddad, O.B., 2020. Predictive model of algal biofuel production based on experimental data. Algal. Res. 47, 101843.
|
[5] |
Béchet, Q., Shilton, A., Guieysse, B., 2013. Modeling the effects of light and temperature on algae growth: state of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnol. Adv. 31, 1648-1663.
|
[6] |
Bekoe, D., Wang, L.J., Zhang, B., Scott Todd, M., Shahbazi, A., 2018. Aerobic treatment of swine manure to enhance anaerobic digestion and microalgal cultivation. J. Environ. Sci. Health B 53, 145-151.
|
[7] |
Bentahar, J., Deschênes, J.S., 2023. A reliable multi-nutrient model for the rapid production of high-density microalgal biomass over a broad spectrum of mixotrophic conditions. Bioresour. Technol. 381, 129162.
|
[8] |
Bidart, C., Fröhling, M., Schultmann, F., 2014. Electricity and substitute natural gas generation from the conversion of wastewater treatment plant sludge. Appl. Energy 113, 404-413.
|
[9] |
Buhr, H.O., Miller, S.B., 1983. A dynamic model of the high-rate algal-bacterial wastewater treatment pond. Water. Res. 17, 29-37.
|
[10] |
Casagli, F., Rossi, S., Steyer, J.P., Bernard, O., Ficara, E., 2021a. Balancing microalgae and nitrifiers for wastewater treatment: can inorganic carbon limitation cause an environmental threat? Environ. Sci. Technol. 55, 3940-3955.
|
[11] |
Casagli, F., Zuccaro, G., Bernard, O., Steyer, J.P., Ficara, E., 2021b. ALBA: a comprehensive growth model to optimize algae-bacteria wastewater treatment in raceway ponds. Water. Res. 190, 116734.
|
[12] |
Chen, C.Y., Chang, Y.H., Chang, H.Y., 2016. Outdoor cultivation of Chlorella vulgaris FSP-E in vertical tubular-type photobioreactors for microalgal protein production. Algal. Res. 13, 264-270.
|
[13] |
Chen, G.Y., Zhao, L., Qi, Y., 2015. Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: a critical review. Appl. Energy 137, 282-291.
|
[14] |
Dalrymple, O.K., Halfhide, T., Udom, I., Gilles, B., Wolan, J., Zhang, Q., Ergas, S., 2013. Wastewater use in algae production for generation of renewable resources: a review and preliminary results. Aquat. Biosyst. 9, 2.
|
[15] |
de Farias Silva, C.E., de Oliveira Cerqueira, R.B., de Lima Neto, C.F., de Andrade, F.P., de Oliveira Carvalho, F., Tonholo, J., 2020. Developing a kinetic model to describe wastewater treatment by microalgae based on simultaneous carbon, nitrogen and phosphorous removal. J. Environ. Chem. Eng. 8, 103792.
|
[16] |
Deamici, K.M., Pessôa, L.C., Mata, S.N., Moreira, Í.T.A., de Jesus Assis, D., de Souza, C.O., 2024. Enhancing microalgal cultures in desalinized wastewater from semiarid regions: an assessment of growth dynamics and biomass accumulation. J. Appl. Phycol. 36, 1135-1142.
|
[17] |
Decostere, B., De Craene, J., Van Hoey, S., Vervaeren, H., Nopens, I., Van Hulle, S.W.H., 2016. Validation of a microalgal growth model accounting with inorganic carbon and nutrient kinetics for wastewater treatment. Chem. Eng. J. 285, 189-197.
|
[18] |
Demirbas, A., Fatih Demirbas, M., 2011. Importance of algae oil as a source of biodiesel. Energy Convers. Manag. 52, 163-170.
|
[19] |
Doušková, I., Kaštánek, F., Maléterová, Y., Kaštánek, P., Doucha, J., Zachleder, V., 2010. Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: biogas-cogeneration-microalgae-products. Energy Convers. Manag. 51, 606-611.
|
[20] |
Dragone, G., 2022. Challenges and opportunities to increase economic feasibility and sustainability of mixotrophic cultivation of green microalgae of the genus Chlorella. Renew. Sustain. Energy Rev. 160, 112284.
|
[21] |
Endo, H., Sansawa, H., Nakajima, K., 1977. Studies on Chlorella regularis, heterotrophic fast-growing strain Ⅱ. Mixotrophic growth in relation to light intensity and acetate concentration. Plant Cell Physiol. 18, 199-205.
|
[22] |
Eze, V.C., Velasquez-Orta, S.B., Hernández-García, A., Monje-Ramírez, I., Orta-Ledesma, M.T., 2018. Kinetic modelling of microalgae cultivation for wastewater treatment and carbon dioxide sequestration. Algal. Res. 32, 131-141.
|
[23] |
Figueroa-Torres, G.M., Pittman, J.K., Theodoropoulos, C., 2017. Kinetic modelling of starch and lipid formation during mixotrophic, nutrient-limited microalgal growth. Bioresour. Technol. 241, 868-878.
|
[24] |
Grover, J.P., 1991. Dynamics of competition among microalgae in variable environments: experimental tests of alternative models. Oikos. 62, 231-243.
|
[25] |
Henze M., Gujer W., Mino T., van Loosdrecht M., 2000. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3. London: IWA Publishing.
|
[26] |
Heredia-Arroyo, T., Wei, W., Ruan, R., Hu, B., 2011. Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. BioMass BioEnergy 35, 2245-2253.
|
[27] |
Iman Shayan, S., Zalivina, N., Wang, M., Ergas, S.J., Zhang, Q., 2022. Dynamic model of algal-bacterial shortcut nitrogen removal in photo-sequencing batch reactors. Algal. Res. 64, 102688.
|
[28] |
John, E.H., Flynn, K.J., 2000. Modelling phosphate transport and assimilation in microalgae; how much complexity is warranted? Ecol. Model. 125, 145-157.
|
[29] |
Khan, M.I., Shin, J.H., Kim, J.D., 2018. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 17, 36.
|
[30] |
Kong, W.W., Kong, J., Feng, S., Yang, T.T., Xu, L.F., Shen, B.X., Bi, Y.H., Lyu, H.H., 2024. Cultivation of microalgae-bacteria consortium by waste gas-waste water to achieve CO2 fixation, wastewater purification and bioproducts production. Biotechnol. Biofuels Bioprod. 17, 26.
|
[31] |
Lee, E., Jalalizadeh, M., Zhang, Q., 2015. Growth kinetic models for microalgae cultivation: a review. Algal. Res. 12, 497-512.
|
[32] |
Leite, G.B., Abdelaziz, A.E.M., Hallenbeck, P.C., 2013. Algal biofuels: challenges and opportunities. Bioresour. Technol. 145, 134-141.
|
[33] |
Li, Y.Q., Horsman, M., Wu, N., Lan, C.Q., Dubois-Calero, N., 2008. Biofuels from microalgae. Biotechnol. Prog. 24, 815-820.
|
[34] |
Liang, Y.N., Sarkany, N., Cui, Y., 2009. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol. Lett. 31, 1043-1049.
|
[35] |
Liu, J., Chen, F., 2016. Biology and industrial applications of Chlorella: advances and prospects. In: Posten, C., Feng Chen, S. (Eds.). Microalgae Biotechnology. Cham: Springer International Publishing, 1-35.
|
[36] |
Liu, Y.Q., Zhou, J., Liu, D., Zeng, Y.H., Tang, S., Han, Y.L., Jiang, Y.L., Cai, Z.H., 2022. A growth-boosting synergistic mechanism of Chromochloris zofingiensis under mixotrophy. Algal. Res. 66, 102812.
|
[37] |
Lopes, E.W.R., dos Santos Carneiro, W., de Farias Silva, C.E., de Araujo Vitorino, A.F.R., de Sá Filho, M.L.F., De Andrade, F.P., 2023. A procedure to implement kinetic modelling of wastewater treatment by microalgae considering multiple contaminant removal. Energy Ecol. Environ. 8, 556-569.
|
[38] |
Martínez, C., Mairet, F., Bernard, O., 2018. Theory of turbid microalgae cultures. J. Theor. Biol. 456, 190-200.
|
[39] |
Masuko, T., Minami, A., Iwasaki, N., Majima, T., Nishimura, S.I., Lee, Y.C., 2005. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal. Biochem. 339, 69-72.
|
[40] |
Medipally, S.R., Yusoff, F.M., Banerjee, S., Shariff, M., 2015. Microalgae as sustainable renewable energy feedstock for biofuel production. Biomed Res. Int. 2015, 519513.
|
[41] |
Mozumder, M.S.I., Hasan Shahriar Rahat, S.M., Islam, M.M., Mehjabin, F., Mahmud, F., Basak, R., Rahman, M.M., 2024. Model development and process evaluation for algal growth and lipid production. Biochem. Eng. J. 212, 109485.
|
[42] |
Nordio, R., Rodríguez-Miranda, E., Casagli, F., Sánchez-Zurano, A., Guzmán, J.L., Acién, G., 2024. ABACO-2: a comprehensive model for microalgae-bacteria consortia validated outdoor at pilot-scale. Water. Res. 248, 120837.
|
[43] |
Novak, J.T., Brune, D.E., 1985. Inorganic carbon limited growth kinetics of some freshwater algae. Water. Res. 19, 215-225.
|
[44] |
Palafox-Sola, M.F., Yebra-Montes, C., Orozco-Nunnelly, D.A., Carrillo-Nieves, D., González-López, M.E., Gradilla-Hernández, M.S., 2023. Modeling growth kinetics and community interactions in microalgal cultures for bioremediation of anaerobically digested swine wastewater. Algal Res. 70, 102981.
|
[45] |
Pang, N., Bergeron, A.D., Gu, X.Y., Fu, X., Dong, T., Yao, Y.Q., Chen, S.L., 2020. Recycling of nutrients from dairy wastewater by extremophilic microalgae with high ammonia tolerance. Environ. Sci. Technol. 54, 15366-15375.
|
[46] |
Patel, A.K., Choi, Y.Y., Sim, S.J., 2020. Emerging prospects of mixotrophic microalgae: way forward to sustainable bioprocess for environmental remediation and cost-effective biofuels. Bioresour. Technol. 300, 122741.
|
[47] |
Pooja, K., Priyanka, V., Rao, B.C.S., Raghavender, V., 2022. Cost-effective treatment of sewage wastewater using microalgae Chlorella vulgaris and its application as bio-fertilizer. Energy Nexus. 7, 100122.
|
[48] |
Reichert, P., Borchardt, D., Henze, M., Rauch, W., Shanahan, P., Somlyódy, L., Vanrolleghem, P., 2001. River water quality model no. 1 (RWQM1): Ⅱ. biochemical process equations. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 43, 11-30.
|
[49] |
Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., Tredici, M.R., 2009. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102, 100-112.
|
[50] |
Roy, C., Sen, P., Vurimindi, H., 2023. Kinetic modeling and experiments on removal of COD/nutrients from dairy effluent using Chlorella and co-culture. Bioprocess Biosyst. Eng. 46, 1099-1110.
|
[51] |
Saldarriaga, L.F., Almenglo, F., Ramírez, M., Cantero, D., 2020. Kinetic characterization and modeling of a microalgae consortium isolated from landfill leachate under a high CO2 concentration in a bubble column photobioreactor. Electron. J. Biotechnol. 44, 47-57.
|
[52] |
Sarwer, A., Hamed, S.M., Osman, A.I., Jamil, F., Al-Muhtaseb, A.H., Alhajeri, N.S., Rooney, D.W., 2022. Algal biomass valorization for biofuel production and carbon sequestration: a review. Environ. Chem. Lett. 20, 2797-2851.
|
[53] |
Shan, S.Z., Manyakhin, A.Y., Wang, C., Ge, B.S., Han, J.C., Zhang, X.Z., Zhou, C.X., Yan, X.J., Ruan, R., Cheng, P.F., 2023. Mixotrophy, a more promising culture mode: multi-faceted elaboration of carbon and energy metabolism mechanisms to optimize microalgae culture. Bioresour. Technol. 386, 129512.
|
[54] |
Solimeno, A., García, J., 2017. Microalgae-bacteria models evolution: from microalgae steady-state to integrated microalgae-bacteria wastewater treatment models - A comparative review. Sci. Total Environ. 607/608, 1136-1150.
|
[55] |
Solimeno, A., Gómez-Serrano, C., Acién, F.G., 2019. BIO_ALGAE 2: improved model of microalgae and bacteria consortia for wastewater treatment. Environ. Sci. Pollut. Res. Int. 26, 25855-25868.
|
[56] |
Solimeno, A., Parker, L., Lundquist, T., García, J., 2017. Integral microalgae-bacteria model (BIO_ALGAE): application to wastewater high rate algal ponds. Sci. Total Environ. 601, 646-657.
|
[57] |
Sommer, U., 1991. A comparison of the droop and the monod models of nutrient limited growth applied to natural populations of phytoplankton. Funct. Ecol. 5, 535.
|
[58] |
Surendhiran, D., Vijay, M., Sivaprakash, B., Sirajunnisa, A., 2015. Kinetic modeling of microalgal growth and lipid synthesis for biodiesel production. 3. Biotech. 5, 663-669.
|
[59] |
Viruela, A., Aparicio, S., Robles, Á., Borrás Falomir, L., Serralta, J., Seco, A., Ferrer, J., 2021. Kinetic modeling of autotrophic microalgae mainline processes for sewage treatment in phosphorus-replete and-deplete culture conditions. Sci. Total Environ. 797, 149165.
|
[60] |
Wang, L., Min, M., Li, Y.C., Chen, P., Chen, Y.F., Liu, Y.H., Wang, Y.K., Ruan, R., 2010. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl. Biochem. Biotechnol. 162, 1174-1186.
|
[61] |
Wolf, G., Picioreanu, C., van Loosdrecht, M.C.M., 2007. Kinetic modeling of phototrophic biofilms: the PHOBIA model. Biotechnol. Bioeng. 97, 1064-1079.
|
[62] |
Xiao, Z.Y., Zheng, Y.R., Gudi, C.R., Liu, Y., Liao, W., Tang, Y.J., 2021. Development of a kinetic model to describe six types of symbiotic interactions in a formate utilizing microalgae-bacteria cultivation system. Algal. Res. 58, 102372.
|
[63] |
Yap, J.K., Sankaran, R., Chew, K.W., Halimatul Munawaroh, H.S., Ho, S.H., Rajesh Banu, J., Show, P.L., 2021. Advancement of green technologies: a comprehensive review on the potential application of microalgae biomass. Chemosphere 281, 130886.
|
[64] |
Yoo, C., Jun, S.Y., Lee, J.Y., Ahn, C.Y., Oh, H.M., 2010. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour. Technol. 101, S71-S74.
|
[65] |
Yu, L., Li, T.T., Ma, J.W., Zhao, Q.B., Wensel, P., Lian, J.N., Chen, S.L., 2022. A kinetic model of heterotrophic and mixotrophic cultivation of the potential biofuel organism microalgae Chlorella sorokiniana. Algal. Res. 64, 102701.
|
[66] |
Zhang, X.W., Zhang, Y.M., Chen, F., 1999. Application of mathematical models to the determination optimal glucose concentration and light intensity for mixotrophic culture of Spirulina platensis. Process. Biochem. 34, 477-481.
|
[67] |
Zheng, M.M., Dai, J.X., Ji, X.W., Li, D.G., He, Y.J., Wang, M.Z., Huang, J., Chen, B.L., 2021. An integrated semi-continuous culture to treat original swine wastewater and fix carbon dioxide by an indigenous Chlorella vulgaris MBFJNU-1 in an outdoor photobioreactor. Bioresour. Technol. 340, 125703.
|
[68] |
Zieliński, M., Dębowski, M., Kazimierowicz, J., 2022. Outflow from a biogas plant as a medium for microalgae biomass cultivation—Pilot scale study and technical concept of a large-scale installation. Energies 15, 2912.
|