Volume 10 Issue 2
May  2025
Turn off MathJax
Article Contents
Rui Yang, Changlei Xia, Changtong Mei, Jianzhang Li. Integration of biopolymers in polyacrylic acid hydrogels: Innovations and applications in bioresources and bioproducts[J]. Journal of Bioresources and Bioproducts, 2025, 10(2): 145-169. doi: 10.1016/j.jobab.2024.12.005
Citation: Rui Yang, Changlei Xia, Changtong Mei, Jianzhang Li. Integration of biopolymers in polyacrylic acid hydrogels: Innovations and applications in bioresources and bioproducts[J]. Journal of Bioresources and Bioproducts, 2025, 10(2): 145-169. doi: 10.1016/j.jobab.2024.12.005

Integration of biopolymers in polyacrylic acid hydrogels: Innovations and applications in bioresources and bioproducts

doi: 10.1016/j.jobab.2024.12.005
More Information
  • Corresponding author: E-mail address: yangrui@njfu.edu.cn (R. Yang)
  • Available Online: 2025-01-02
  • Publish Date: 2025-05-01
  • The development of sustainable biomaterials has recently attracted great interest in the fields of flexible electronics and biosensing hydrogels. Hydrogels are a class of three-dimensional spatial network structure, and their structure and shape can exhibit reversible or noticeable responses to various stimuli, making them a popular choice for flexible electronic materials in recent years. Acrylic hydrogels, which possess a rich carboxylate network, can provide significant sensing and actuation properties to the hydrogels. They are often synthesized through the co-polymerization of their monomers and cross-linking agents, and they can be combined with naturally occurring biopolymers such as cellulose and chitosan to enhance biocompatibility. In this paper, we review the compounding methods and preparation process technologies of functionalized acrylic hydrogels and the application of polyacrylic acid (PAA) bioproducts in various fields. Finally, we review the current challenges and future directions for acrylic hydrogel prepared sensors and their applications.

     

  • Ethics approval and consent to participate
    Not applicable.
    The authors declare no competing interests. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Declaration of competing interest
  • loading
  • Abdollahi, R., Taghizadeh, M.T., Savani, S., 2018. Thermal and mechanical properties of graphene oxide nanocomposite hydrogel based on poly(acrylic acid) grafted onto amylose. Polym. Degrad. Stab. 147, 151–158. doi: 10.1016/j.polymdegradstab.2017.11.022
    Ahmad, Z., Salman, S., Khan, S.A., Amin, A., Rahman, Z.U., Al-Ghamdi, Y.O., Akhtar, K., Bakhsh, E.M., Khan, S.B., 2022. Versatility of hydrogels: from synthetic strategies, classification, and properties to biomedical applications. Gels 8, 167. doi: 10.3390/gels8030167
    Ahmed, A., Nath, J., Baruah, K., Rather, M.A., Mandal, M., Dolui, S.K., 2023. Development of mussel mimetic gelatin based adhesive hydrogel for wet surfaces with self-healing and reversible properties. Int. J. Biol. Macromol. 228, 68–77. doi: 10.1016/j.ijbiomac.2022.12.151
    Ahmed, E.M., 2015. Hydrogel: preparation, characterization, and applications: a review. J. Adv. Res. 6, 105–121. doi: 10.1016/j.jare.2013.07.006
    Algamili, A.S., Khir, M.H.M., Dennis, J.O., Ahmed, A.Y., Alabsi, S.S., Ba Hashwan, S.S., Junaid, M.M., 2021. A review of actuation and sensing mechanisms in MEMS-based sensor devices. Nanoscale Res. Lett. 16, 16. doi: 10.1186/s11671-021-03481-7
    Altug, H., Oh, S.H., Maier, S.A., Homola, J., 2022. Advances and applications of nanophotonic biosensors. Nat. Nanotechnol. 17, 5–16. doi: 10.1038/s41565-021-01045-5
    Anjum, S., Gurave, P., Badiger, M.V., Torris, A., Tiwari, N., Gupta, B., 2017. Design and development of trivalent aluminum ions induced self-healing polyacrylic acid novel hydrogels. Polymer 126, 196–205. doi: 10.1016/j.polymer.2017.08.045
    Arango, J.C., Williams, L.O., Shi, A.N., Singh, A., Nava, E.K., Fisher, R.V., Garfield, J.A., Claridge, S.A., 2022. Nanostructured surface functionalization of polyacrylamide hydrogels below the length scale of hydrogel heterogeneity. ACS Appl. Mater. Interfaces 14, 43937–43945. doi: 10.1021/acsami.2c12034
    Ashraf, R., Sofi, H.S., Malik, A., Beigh, M.A., Hamid, R., Sheikh, F.A., 2019. Recent trends in the fabrication of starch nanofibers: electrospinning and non-electrospinning routes and their applications in biotechnology. Appl. Biochem. Biotechnol. 187, 47–74. doi: 10.1007/s12010-018-2797-0
    Aydemir, N., McArdle, H., Patel, S., Whitford, W., Evans, C.W., Travas-Sejdic, J., Williams, D.E., 2015. A label-free, sensitive, real-time, semiquantitative electrochemical measurement method for DNA polymerase amplification (ePCR). Anal. Chem. 87, 5189–5197. doi: 10.1021/acs.analchem.5b00079
    Bai, H.N., Guo, H., Wang, J., Dong, Y., Liu, B., Xie, Z.L., Guo, F.Q., Chen, D.J., Zhang, R., Zheng, Y.D., 2021. A room-temperature NO2 gas sensor based on CuO nanoflakes modified with rGO nanosheets. Sens. Actuat. B Chem. 337, 129783. doi: 10.1016/j.snb.2021.129783
    Bashir, S., Hina, M., Iqbal, J., Rajpar, A.H., Mujtaba, M.A., Alghamdi, N.A., Wageh, S., Ramesh, K., Ramesh, S., 2020. Fundamental concepts of hydrogels: synthesis, properties, and their applications. Polymers 12, 2702. doi: 10.3390/polym12112702
    Birlutiu, R.M., Birlutiu, V., Mihalache, M., Mihalache, C., Cismasiu, R.S., 2017. Diagnosis and management of orthopedic implant-associated infection: a comprehensive review of the literature. Biomed. Res. 28, 5063–5073.
    Bogusz, K., Zuchora, M., Sencadas, V., Tehei, M., Lerch, M., Thorpe, N., Rosenfeld, A., Dou, S.X., Liu, H.K., Konstantinov, K., 2019. Synthesis of methotrexate-loaded tantalum pentoxide-poly(acrylic acid) nanoparticles for controlled drug release applications. J. Colloid Interface Sci. 538, 286–296. doi: 10.1016/j.jcis.2018.11.097
    Bottichio, L., Keaton, A., Thomas, D., Fulton, T., Tiffany, A., Frick, A., Mattioli, M., Kahler, A., Murphy, J., Otto, M., Tesfai, A., Fields, A., Kline, K., Fiddner, J., Higa, J., Barnes, A., Arroyo, F., Salvatierra, A., Holland, A., Taylor, W., Nash, J., Morawski, B.M., Correll, S., Hinnenkamp, R., Havens, J., Patel, K., Schroeder, M.N., Gladney, L., Martin, H., Whitlock, L., Dowell, N., Newhart, C., Watkins, L.F., Hill, V., Lance, S.S., Harris, S., Wise, M., Williams, I., Basler, C., Gieraltowski, L., 2020. Shiga toxin-producing Escherichia coli infections associated with romaine lettuce-United States, 2018. Clin. Infect. Dis. 71, e323–e330. doi: 10.1093/cid/ciz1182
    Boursianis, A.D., Papadopoulou, M.S., Diamantoulakis, P., Liopa-Tsakalidi, A., Barouchas, P., Salahas, G., Karagiannidis, G., Wan, S.H., Goudos, S.K., 2022. Internet of Things (IoT) and agricultural unmanned aerial vehicles (UAVs) in smart farming: a comprehensive review. Internet Things 18, 100187. doi: 10.1016/j.iot.2020.100187
    Boutry, C.M., Beker, L., Kaizawa, Y., Vassos, C., Tran, H., Hinckley, A.C., Pfattner, R., Niu, S.M., Li, J.H., Claverie, J., Wang, Z., Chang, J., Fox, P.M., Bao, Z.N., 2019. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3, 47–57. doi: 10.1038/s41551-018-0336-5
    Castrica, M., Chiesa, L.M., Nobile, M., De Battisti, F., Siletti, E., Pessina, D., Panseri, S., Balzaretti, C.M., 2021. Rapid safety and quality control during fish shelf-life by using a portable device. J. Sci. Food Agric. 101, 315–326. doi: 10.1002/jsfa.10646
    Cerrato, A., Cavaliere, C., Montone, C.M., Piovesana, S., 2023. New hydrophilic material based on hydrogel polymer for the selective enrichment of intact glycopeptides from serum protein digests. Anal. Chim. Acta 1245, 340862. doi: 10.1016/j.aca.2023.340862
    Ceylan, Ö., Kaya, M.A., Sarac, A., 2019. Preparation of partially neutralized poly(acrylic acid) microspheres via inverse Pickering suspension polymerization. Polym. Eng. Sci. 59, 162–169. doi: 10.1002/pen.24883
    Chen, B.Y., Zhu, D.D., Li, Q., Wang, C.H., Cui, J.H., Zheng, Z., Wang, X.L., 2023. Mechanically reinforced and injectable universal adhesive based on a PEI-PAA/alg dual-network hydrogel designed by topological entanglement and catechol chemistry. ACS Appl. Mater. Interfaces 15, 59826–59837. doi: 10.1021/acsami.3c14743
    Chen, W.P., Hao, D.Z., Hao, W.J., Guo, X.L., Jiang, L., 2018. Hydrogel with ultrafast self-healing property both in air and underwater. ACS Appl. Mater. Interfaces 10, 1258–1265. doi: 10.1021/acsami.7b17118
    Chen, Y., Li, P., Liao, L.Y., Qin, Y.Y., Jiang, L.W., Liu, Y., 2021. Characteristic fingerprints and volatile flavor compound variations in Liuyang Douchi during fermentation via HS-GC-IMS and HS-SPME-GC-MS. Food Chem. 361, 130055. doi: 10.1016/j.foodchem.2021.130055
    Cheng, H., Shi, Z., Yue, K., Huang, X.S., Xu, Y.C., Gao, C.H., Yao, Z.Q., Zhang, Y.S., Wang, J., 2021. Sprayable hydrogel dressing accelerates wound healing with combined reactive oxygen species-scavenging and antibacterial abilities. Acta Biomater. 124, 219–232. doi: 10.1016/j.actbio.2021.02.002
    Choudhury, R.R., Gohil, J.M., Dutta, K., 2022. Eco-friendly method for preparation of cross-linked PVA/PAA thin films and membranes thereof for water treatment. Iran. Polym. J. 31, 1537–1550. doi: 10.1007/s13726-022-01096-y
    Corres, J. M., Arregui, F. J., Matías, I. R., Rodríguez, Y. Y., 2013. High sensitivity optical fiber pH sensor using poly(acrylic acid) nanofibers. EN 2013. IEEE SENSORS 1–4. doi: 10.1109/ICSENS.2013.6688291
    Costa, L.I., Storti, G., Lazzari, S., 2018. Solution of population balance equations by logarithmic shape preserving interpolation on finite elements. Computers & Chemical Engineering 119, 13-14.
    Cozens, E.J., Roohpour, N., Gautrot, J.E., 2021. Comparative adhesion of chemically and physically crosslinked poly(acrylic acid)-based hydrogels to soft tissues. Eur. Polym. J. 146, 110250. doi: 10.1016/j.eurpolymj.2020.110250
    de Lira, D.R.P., Cavalcanti, A.M.F., Pinheiro, S.R.S., Orsi, H., Dos Santos, L.F., Hernandes, R.T., 2021. Identification of a hybrid atypical enteropathogenic and enteroaggregative Escherichia coli (aEPEC/EAEC) clone of serotype O3: H2 associated with a diarrheal outbreak in Brazil. Braz. J. Microbiol. 52, 2075–2079. doi: 10.1007/s42770-021-00580-6
    De Rycke, E., Stove, C., Dubruel, P., De Saeger, S., Beloglazova, N., 2020. Recent developments in electrochemical detection of illicit drugs in diverse matrices. Biosens. Bioelectron. 169, 112579. doi: 10.1016/j.bios.2020.112579
    Demir, S., Adımcılar, V., Cini, N., Gölcü, A., 2022. In-vitro release study of Pt (II) and Fe (III) metallocefotaxime drug candidates in pH dependent releasing mediums mimicking human biological fluids. J. Drug Deliv. Sci. Technol. 71, 103328. doi: 10.1016/j.jddst.2022.103328
    Deng, K.F., Bellmann, C., Fu, Y.X., Rohn, M., Guenther, M., Gerlach, G., 2018. Miniaturized force-compensated hydrogel-based pH sensors. Sens. Actuat. B Chem. 255, 3495–3504. doi: 10.1016/j.snb.2017.09.183
    Ding, Q., Li, C., Wang, H.J., Xu, C.L., Kuang, H., 2021. Electrochemical detection of heavy metal ions in water. Chem. Commun. 57, 7215–7231. doi: 10.1039/d1cc00983d
    Ding, Q.T., Zhang, S., Liu, X.L., Zhao, Y.C., Yang, J.L., Chai, G.D., Wang, N., Ma, S., Liu, W.C., Ding, C.B., 2023. Hydrogel tissue bioengineered scaffolds in bone repair: a review. Molecules 28, 7039. doi: 10.3390/molecules28207039
    Fang, H., Lin, J.B., Hu, Z.X., Liu, H., Tang, Z.R., Shi, T.L., Liao, G.L., 2020. Cu (OH)2 nanowires/graphene oxide composites based QCM humidity sensor with fast-response for real-time respiration monitoring. Sens. Actuat. B Chem. 304, 127313. doi: 10.1016/j.snb.2019.127313
    Fazial, F.F., Tan, L.L., Zubairi, S.I., 2018. Bienzymatic creatine biosensor based on reflectance measurement for real-time monitoring of fish freshness. Sens. Actuat. B Chem. 269, 36–45. doi: 10.1016/j.snb.2018.04.141
    Fei, X.F., Lou, Z.H., Xiao, R., Ren, Z.Q., Lv, X.N., 2022. Source analysis and source-oriented risk assessment of heavy metal pollution in agricultural soils of different cultivated land qualities. J. Clean. Prod. 341, 130942. doi: 10.1016/j.jclepro.2022.130942
    Feng, E.K., Gao, W., Yan, Z., Li, J.J., Li, Z.L., Ma, X.X., Ma, L.H., Yang, Z.M., 2020. A multifunctional hydrogel polyelectrolyte based flexible and wearable supercapacitor. J. Power Sources 479, 229100. doi: 10.1016/j.jpowsour.2020.229100
    Francis, L., Ahmed, F.E., Hilal, N., 2022. Electrospun membranes for membrane distillation: The state of play and recent advances. Desalination 526, 115511. doi: 10.1016/j.desal.2021.115511
    Gundogdu, D., Alemdar, C., Turan, C., Hazal Husnugil, H., Banerjee, S., Erel-Goktepe, I., 2023. Tuning stimuli-responsive properties of alginate hydrogels through layer-by-layer functionalization for dual-responsive dual drug release. Colloids Surf. A Physicochem. Eng. Asp. 676, 132213. doi: 10.1016/j.colsurfa.2023.132213
    Guo, M.L., Wu, Y.P., Xue, S.S., Xia, Y.M., Yang, X., Dzenis, Y., Li, Z.Y., Lei, W.W., Smith, A.T., Sun, L.Y., 2019. A highly stretchable, ultra-tough, remarkably tolerant, and robust self-healing glycerol-hydrogel for a dual-responsive soft actuator. J. Mater. Chem. A 7, 25969–25977. doi: 10.1039/c9ta10183g
    Gupta, N.V., Shivakumar, H.G., 2012. Investigation of swelling behavior and mechanical properties of a pH-sensitive superporous hydrogel composite. Iran. J. Pharm. Res. 11, 481–493. doi: 10.4103/0250-474X.108445
    Hao, S., Li, T.C., Yang, X.M., Song, H.Z., 2023. Ultrastretchable, adhesive, fast self-healable, and three-dimensional printable photoluminescent ionic skin based on hybrid network ionogels. ACS Appl. Mater. Interfaces 14, 2029–2037.
    He, F.L., You, X.Y., Gong, H., Yang, Y., Bai, T., Wang, W.G., Guo, W.X., Liu, X.Y., Ye, M.D., 2020. Stretchable, biocompatible, and multifunctional silk fibroin-based hydrogels toward wearable strain/pressure sensors and triboelectric nanogenerators. ACS Appl. Mater. Interfaces 12, 6442–6450. doi: 10.1021/acsami.9b19721
    He, W.P., Frueh, J., Hu, N., Liu, L.P., Gai, M.Y., He, Q., 2016. Guidable thermophoretic Janus micromotors containing gold nanocolorifiers for infrared laser assisted tissue welding. Adv. Sci. 3, 1600206. doi: 10.1002/advs.201600206
    Hong, X.Y., Ding, H., Li, J., Xue, Y.Y., Sun, L.Y., Ding, F.C., 2021. Poly(acrylamide-co-acrylic acid)/chitosan semi-interpenetrating hydrogel for pressure sensor and controlled drug release. Polym. Adv. Technol. 32, 3050–3058. doi: 10.1002/pat.5317
    Hosseinzadeh, A., Pashaei, S., Hosseinzadeh, S., Namazi, H., 2020. Surface modification of multiwalled carbon nanotubes via surface RAFT copolymerization method and capecitabine-loaded anticancer hydrogel for controlled drug delivery in stomach. Polym. Plast. Technol. Mater. 59, 1812–1821. doi: 10.1080/25740881.2020.1765387
    Hu, L., Chee, P.L., Sugiarto, S., Yu, Y., Shi, C., Yan, R., Yao, Z., Shi, X., Zhi, J., Kai, D., Yu, H.D., Huang, W., 2023. Hydrogel-based flexible electronics. Adv. Mater. Deerfield Beach Fla 35, e2205326. doi: 10.1002/adma.202205326
    Huang, C.B., Soenen, S.J., Rejman, J., Lucas, B., Braeckmans, K., Demeester, J., De Smedt, S.C., 2011. Stimuli-responsive electrospun fibers and their applications. Chem. Soc. Rev. 40, 2417–2434. doi: 10.1039/c0cs00181c
    Hussain, S., Park, S.Y., 2023. pH-responsive circular bilayer biosensor based on the actuation of an interpenetrating polymer network comprising crosslinked nematic liquid crystals and poly(Acrylic Acid). Sens. Actuat. B Chem. 377, 133096. doi: 10.1016/j.snb.2022.133096
    Hussain, Y.A., Liu, T., Roberts, G.W., 2012. Synthesis of cross-linked, partially neutralized poly(acrylic acid) by suspension polymerization in supercritical carbon dioxide. Ind. Eng. Chem. Res. 51, 11401–11408. doi: 10.1021/ie3014007
    Ivanov, A.S., Pershina, L.V., Nikolaev, K.G., Skorb, E.V., 2021. Recent progress of layer-by-layer assembly, free-standing film and hydrogel based on polyelectrolytes. Macromol. Biosci. 21, e2100117. doi: 10.1002/mabi.202100117
    Jackson, A.W., Mothe, S.R., Ang, P., Chennamaneni, L.R., Herk, A.M.V., Thoniyot, P., 2022. Backbone degradable poly(acrylic acid) analogue via radical ring-opening copolymerization and enhanced biodegradability. Chemosphere 293, 133487. doi: 10.1016/j.chemosphere.2021.133487
    Jacob, S., Nair, A.B., Shah, J., Sreeharsha, N., Gupta, S., Shinu, P., 2021. Emerging role of hydrogels in drug delivery systems, tissue engineering and wound management. Pharmaceutics 13, 357. doi: 10.3390/pharmaceutics13030357
    Ji, Y.T., Sun, Y.L., Javed, M., Xiao, Y.H., Li, X.Y., Jin, K.L., Cai, Z.S., Xu, B., 2022. Skin inspired thermoresponsive polymer for constructing self-cooling system. Energy Convers. Manag. 254, 115251. doi: 10.1016/j.enconman.2022.115251
    Jiao, G.J., Ma, J.L., Li, Y.C., Jin, D.N., Zhou, J.H., Sun, R.C., 2022. Removed heavy metal ions from wastewater reuse for chemiluminescence: successive application of lignin-based composite hydrogels. J. Hazard. Mater. 421, 126722. doi: 10.1016/j.jhazmat.2021.126722
    Jiao, Y., Lu, K.Y., Lu, Y., Yue, Y.Y., Xu, X.W., Xiao, H.N., Li, J., Han, J.Q., 2021. Highly viscoelastic, stretchable, conductive, and self-healing strain sensors based on cellulose nanofiber-reinforced polyacrylic acid hydrogel. Cellulose 28, 4295–4311. doi: 10.1007/s10570-021-03782-1
    Jin, Y.H., Wang, Q., Taynton, P., Zhang, W., 2014. Dynamic covalent chemistry approaches toward macrocycles, molecular cages, and polymers. Acc. Chem. Res. 47, 1575–1586. doi: 10.1021/ar500037v
    Jurczak, P., Lach, S., 2023. Hydrogels as scaffolds in bone-related tissue engineering and regeneration. Macromol. Biosci. 23, e2300152. doi: 10.1002/mabi.202300152
    Karaouzas, I., Kapetanaki, N., Mentzafou, A., Kanellopoulos, T.D., Skoulikidis, N., 2021. Heavy metal contamination status in Greek surface waters: a review with application and evaluation of pollution indices. Chemosphere 263, 128192. doi: 10.1016/j.chemosphere.2020.128192
    Kasai, R.D., Radhika, D., Archana, S., Shanavaz, H., Koutavarapu, R., Lee, D.Y., Shim, J., 2023. A review on hydrogels classification and recent developments in biomedical applications. Int. J. Polym. Mater. Polym. Biomater. 72, 1059–1069. doi: 10.1080/00914037.2022.2075872
    Katz, J.N., Arant, K.R., Loeser, R.F., 2021. Diagnosis and treatment of hip and knee osteoarthritis: a review. JAMA 325, 568–578. doi: 10.1001/jama.2020.22171
    Kaur, B., Kumar, S., Kaushik, B.K., 2022. Recent advancements in optical biosensors for cancer detection. Biosens. Bioelectron. 197, 113805. doi: 10.1016/j.bios.2021.113805
    Kerr-Phillips, T.E., Aydemir, N., Chan, E.W.C., Barker, D., Malmström, J., Plesse, C., Travas-Sejdic, J., 2018. Conducting electrospun fibres with polyanionic grafts as highly selective, label-free, electrochemical biosensor with a low detection limit for non-Hodgkin lymphoma gene. Biosens. Bioelectron. 100, 549–555. doi: 10.1016/j.bios.2017.09.042
    Khatib, M., Haick, H., 2022. Sensors for volatile organic compounds. ACS Nano 16, 7080–7115. doi: 10.1021/acsnano.1c10827
    Kim, H.J., Paquin, L., Barney, C.W., So, S., Chen, B.H., Suo, Z.G., Crosby, A.J., Hayward, R.C., 2020. Low-voltage reversible electroadhesion of ionoelastomer junctions. Adv. Mater. 32, e2000600. doi: 10.1002/adma.202000600
    Kou, D.H., Zhang, Y.C., Zhang, S.F., Wu, S.L., Ma, W., 2019. High-sensitive and stable photonic crystal sensors for visual detection and discrimination of volatile aromatic hydrocarbon vapors. Chem. Eng. J. 375, 121987. doi: 10.1016/j.cej.2019.121987
    Lee, S.M., Hamonangan, W.M., Kim, J.H., Kim, S.H., 2022. Soft and tough microcapsules with double-network hydrogel shells. Adv. Funct. Mater. 32, 2203761. doi: 10.1002/adfm.202203761
    Leung, Y.Y., Wu, F.H.W., Chan, H.H., 2020. Ultrasonography-guided arthrocentesis versus conventional arthrocentesis in treating internal derangement of temporomandibular joint: a systematic review. Clin. Oral Investig. 24, 3771–3780. doi: 10.1007/s00784-020-03408-z
    Li, B., Xu, X.J., Hu, Z.G., Li, Y.J., Zhou, M.J., Liu, J.Z., Jiang, Y.J., Wang, P., 2022a. Rapid preparation of N-CNTs/P (AA- co-AM) composite hydrogel via frontal polymerization and its mechanical and conductive properties. RSC Adv. 12, 19022–19028. doi: 10.1039/d2ra02003c
    Li, D., Yang, Y.J., Yang, J., Fang, M.M., Tang, B.Z., Li, Z., 2022b. Completely aqueous processable stimulus responsive organic room temperature phosphorescence materials with tunable afterglow color. Nat. Commun. 13, 347. doi: 10.1038/s41467-022-28011-6
    Li, J.R., Zou, J., Xiao, H.N., He, B.H., Hou, X.B., Qian, L.Y., 2018. Preparation of novel nano-sized hydrogel microcapsules via layer-by-layer assembly as delivery vehicles for drugs onto hygiene paper. Polymers 10, 335. doi: 10.3390/polym10030335
    Li, L., Yan, B., Yang, J.Q., Chen, L.Y., Zeng, H.B., 2015. Novel mussel-inspired injectable self-healing hydrogel with anti-biofouling property. Adv. Mater. 27, 1294–1299. doi: 10.1002/adma.201405166
    Li, L., Zheng, X.Y., Pan, C.J., Pan, H., Guo, Z.Q., Liu, B.M., Liu, Y., 2021a. A pH-sensitive and sustained-release oral drug delivery system: the synthesis, characterization, adsorption and release of the xanthan gum- graft-poly(acrylic acid)/GO-DCFP composite hydrogel. RSC Adv. 11, 26229–26240. doi: 10.1039/d1ra01012c
    Li, N., Liu, C.J., Chen, W., 2019. Facile access to guar gum based supramolecular hydrogels with rapid self-healing ability and multistimuli responsive gel-Sol transitions. J. Agric. Food Chem. 67, 746–752. doi: 10.1021/acs.jafc.8b05130
    Li, S.H., Pan, H.Y., Wang, Y.T., Sun, J.Q., 2020. Polyelectrolyte complex-based self-healing, fatigue-resistant and anti-freezing hydrogels as highly sensitive ionic skins. J. Mater. Chem. A 8, 3667–3675. doi: 10.1039/c9ta13213a
    Li, S.N., Yu, Z.R., Guo, B.F., Guo, K.Y., Li, Y., Gong, L.X., Zhao, L., Bae, J., Tang, L.C., 2021b. Environmentally stable, mechanically flexible, self-adhesive, and electrically conductive Ti3C2TX MXene hydrogels for wide-temperature strain sensing. Nano Energy 90, 106502. doi: 10.1016/j.nanoen.2021.106502
    Li, X.F., Zhao, Y.J., Li, D.P., Zhang, G.W., Long, S.J., Wang, H., 2017. Hybrid dual crosslinked polyacrylic acid hydrogels with ultrahigh mechanical strength, toughness and self-healing properties via soaking salt solution. Polymer 121, 55–63. doi: 10.1016/j.polymer.2017.05.070
    Liang, Y.P., He, J.H., Guo, B.L., 2021. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15, 12687–12722. doi: 10.1021/acsnano.1c04206
    Liao, H., Guo, X.L., Wan, P.B., Yu, G.H., 2019. Conductive MXene nanocomposite organohydrogel for flexible, healable, low-temperature tolerant strain sensors. Adv. Funct. Mater. 29, 1904507. doi: 10.1002/adfm.201904507
    Ling, Q.J., Liu, W.T., Liu, J.C., Zhao, L., Ren, Z.J., Gu, H.B., 2022. Highly sensitive and robust polysaccharide-based composite hydrogel sensor integrated with underwater repeatable self-adhesion and rapid self-healing for human motion detection. ACS Appl. Mater. Interfaces 14, 24741–24754. doi: 10.1021/acsami.2c01785
    Lipton, J., Weng, G.M., Rӧhr, J.A., Wang, H., Taylor, A.D., 2020. Layer-by-layer assembly of two-dimensional materials: meticulous control on the nanoscale. Matter 2, 1148–1165. doi: 10.1016/j.matt.2020.03.012
    Liu, H.Y., Wang, X., Cao, Y.X., Yang, Y.Y., Yang, Y.T., Gao, Y.F., Ma, Z.S., Wang, J.F., Wang, W.J., Wu, D.C., 2020a. Freezing-tolerant, highly sensitive strain and pressure sensors assembled from ionic conductive hydrogels with dynamic cross-links. ACS Appl. Mater. Interfaces 12, 25334–25344. doi: 10.1021/acsami.0c06067
    Liu, J., Jiang, L., He, S.R., Zhang, J., Shao, W., 2022a. Recent progress in PNIPAM-based multi-responsive actuators: a mini-review. Chem. Eng. J. 433, 133496. doi: 10.1016/j.cej.2021.133496
    Liu, J.J., Qu, S.X., Suo, Z.G., Yang, W., 2021a. Functional hydrogel coatings. Natl. Sci. Rev. 8, 1–19.
    Liu, J.Q., Cui, L., Kong, N., Barrow, C.J., Yang, W.R., 2014. RAFT controlled synthesis of graphene/polymer hydrogel with enhanced mechanical property for pH-controlled drug release. Eur. Polym. J. 50, 9–17. doi: 10.1016/j.eurpolymj.2013.10.015
    Liu, L., Meng, W.K., Li, L., Xu, G.J., Wang, X., Chen, L.Z., Wang, M.L., Lin, J.M., Zhao, R.S., 2019. Facile room-temperature synthesis of a spherical mesoporous covalent organic framework for ultrasensitive solid-phase microextraction of phenols prior to gas chromatography-tandem mass spectrometry. Chem. Eng. J. 369, 920–927. doi: 10.1016/j.cej.2019.03.148
    Liu, Q.X., Liu, Y., Shi, J.L., Liu, Z.G., Wang, Q., Guo, C.F., 2022b. High-porosity foam-based iontronic pressure sensor with superhigh sensitivity of 9280 kPa-1. Nanomicro Lett. 14, 21.
    Liu, Y., Zhu, Y.F., Wang, Y.S., Wang, X.C., Zong, L., Wang, A.Q., 2023. Semi-coke-enhanced eco-friendly superabsorbent composites for agricultural application. Polym. Bull. 80, 569–588. doi: 10.1007/s00289-022-04099-0
    Liu, Y.T., Xiong, D.S., Zhao, X.D., 2020b. Improved biotribological properties of polyetheretherketone composites for artificial joints with a 'soft-on-hard' structure and brushlike molecules. Tribol. Int. 145, 106165. doi: 10.1016/j.triboint.2020.106165
    Liu, Y.X., Li, X.G., Zhang, Y.N., Zhao, Y., 2021b. Fiber-optic sensors based on Vernier effect. Measurement 167, 108451. doi: 10.1016/j.measurement.2020.108451
    Loconsole, D., Giordano, M., Laforgia, N., Torres, D., Santangelo, L., Carbone, V., Parisi, A., Quarto, M., Scavia, G., Chironna, M., Group, B.D.A.W., 2020. Case-management protocol for bloody diarrhea as a model to reduce the clinical impact of Shiga toxin-producing Escherichia coli infections. Experience from Southern Italy. Eur. J. Clin. Microbiol. Infect. Dis. 39, 539–547. doi: 10.1007/s10096-019-03755-0
    Lu, Y.M., Wu, Y., Liang, J., Libera, M.R., Sukhishvili, S.A., 2015. Self-defensive antibacterial layer-by-layer hydrogel coatings with pH-triggered hydrophobicity. Biomaterials 45, 64–71. doi: 10.1016/j.biomaterials.2014.12.048
    Lyu, C.G., Yang, B., Tian, J.C., Jin, J., Ge, C.F., Yang, J.C., 2022. Three-fingers FBG tactile sensing system based on squeeze-and-excitation LSTM for object classification. IEEE Trans. Instrum. Meas. 71, 7004611.
    Mao, J., Zhao, C.X., Li, Y.T., Xiang, D., Wang, Z.X., 2020. Highly stretchable, self-healing, and strain-sensitive based on double-crosslinked nanocomposite hydrogel. Compos. Commun. 17, 22–27. doi: 10.1016/j.coco.2019.10.007
    Melocchi, A., Uboldi, M., Cerea, M., Foppoli, A., Maroni, A., Moutaharrik, S., Palugan, L., Zema, L., Gazzaniga, A., 2021. Shape memory materials and 4D printing in pharmaceutics. Adv. Drug Deliv. Rev. 173, 216–237. doi: 10.1016/j.addr.2021.03.013
    Meng, K.Y., Xiao, X., Wei, W.X., Chen, G.R., Nashalian, A., Shen, S., Xiao, X., Chen, J., 2022. Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 34, e2109357. doi: 10.1002/adma.202109357
    Miao, Y., Xu, M.D., Zhang, L.D., 2021. Electrochemistry-induced improvements of mechanical strength, self-healing, and interfacial adhesion of hydrogels. Adv. Mater. 33, e2102308. doi: 10.1002/adma.202102308
    Min, J.H., Sempionatto, J.R., Teymourian, H., Wang, J., Gao, W., 2021. Wearable electrochemical biosensors in North America. Biosens. Bioelectron. 172, 112750. doi: 10.1016/j.bios.2020.112750
    Minami, H., Kimura, A., Kinoshita, K., Okubo, M., 2010. Preparation of poly(acrylic acid) particles by dispersion polymerization in an ionic liquid. Langmuir 26, 6303–6307. doi: 10.1021/la904115s
    Ming, X.J., Zhong, W.B., Ke, Y.M., Lu, J., Jia, K.Y., Ding, X.C., Jiang, H.Q., Li, M.F., Wang, D., 2023. Isopropanol-regulated adhesion-controllable conductive gels for robust bioelectric signal monitoring and flexible underwater robots. Chem. Eng. J. 460, 141746. doi: 10.1016/j.cej.2023.141746
    Mo, F.L., Jiang, K., Zhao, D., Wang, Y.Q., Song, J., Tan, W.H., 2021. DNA hydrogel-based gene editing and drug delivery systems. Adv. Drug Deliv. Rev. 168, 79–98. doi: 10.1016/j.addr.2020.07.018
    Mohammadian, M., Sahraei, R., Ghaemy, M., 2019. Synthesis and fabrication of antibacterial hydrogel beads based on modified-gum tragacanth/poly(vinyl alcohol)/Ag0 highly efficient sorbent for hard water softening. Chemosphere 225, 259–269. doi: 10.1016/j.chemosphere.2019.03.040
    Morelle, X.P., Illeperuma, W.R., Tian, K., Bai, R.B., Suo, Z.G., Vlassak, J.J., 2018. Highly stretchable and tough hydrogels below water freezing temperature. Adv. Mater. 30, e1801541. doi: 10.1002/adma.201801541
    Naïli, I., Gardette, M., Garrivier, A., Daniel, J., Desvaux, M., Pizza, M., Gobert, A., Marchal, T., Loukiadis, E., Jubelin, G., 2020. Interplay between enterohaemorrhagic Escherichia coli and nitric oxide during the infectious process. Emerg. Microbes Infect. 9, 1065–1076. doi: 10.1080/22221751.2020.1768804
    Nakano, T., Saito, N., Minami, H., 2020. Preparation of cross-linked monodisperse poly(acrylic acid) particles by precipitation polymerization. Langmuir 36, 11957–11962. doi: 10.1021/acs.langmuir.0c02060
    Oh, J.Y., Bao, Z.N., 2019. Second skin enabled by advanced electronics. Adv. Sci. 6, 1900186. doi: 10.1002/advs.201900186
    Ohm, Y., Pan, C.F., Ford, M.J., Huang, X.N., Liao, J.H., Majidi, C., 2021. An electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics. Nat. Electron. 4, 185–192. doi: 10.1038/s41928-021-00545-5
    Palmisani, J., Nørgaard, A.W., Kofoed-Sørensen, V., Clausen, P.A., de Gennaro, G., Wolkoff, P., 2020. Formation of ozone-initiated VOCs and secondary organic aerosol following application of a carpet deodorizer. Atmos. Environ. 222, 117149. doi: 10.1016/j.atmosenv.2019.117149
    Pei, Y.Y., Zhang, X.L., Hui, Z.Y., Zhou, J.Y., Huang, X., Sun, G.Z., Huang, W., 2021. Ti3C2TX MXene for sensing applications: recent progress, design principles, and future perspectives. ACS Nano 15, 3996–4017. doi: 10.1021/acsnano.1c00248
    Perera, A.A.P.R., Madhushani, K.A.U., Punchihewa, B.T., Kumar, A., Gupta, R.K., 2023. MXene-based nanomaterials for multifunctional applications. Materials (Basel) 16, 1138. doi: 10.3390/ma16031138
    Pourbashir, S., Shahrousvand, M., Ghaffari, M., 2020. Preparation and characterization of semi-IPNs of polycaprolactone/poly(acrylic acid)/cellulosic nanowhisker as artificial articular cartilage. Int. J. Biol. Macromol. 142, 298–310. doi: 10.1016/j.ijbiomac.2019.09.101
    Qian, Y., Zhao, Y., Wu, Q.L., Yang, Y., 2018. Review of salinity measurement technology based on optical fiber sensor. Sens. Actuat. B Chem. 260, 86–105. doi: 10.1016/j.snb.2017.12.077
    Qin, G.W., Niu, Z.D., Yu, J.D., Li, Z.H., Ma, J.Y., Xiang, P., 2021. Soil heavy metal pollution and food safety in China: effects, sources and removing technology. Chemosphere 267, 129205. doi: 10.1016/j.chemosphere.2020.129205
    Ren, J.Y., Liu, Y.H., Wang, Z.Q., Chen, S.Q., Ma, Y.F., Wei, H., Lü, S.Y., 2022. An anti-swellable hydrogel strain sensor for underwater motion detection. Adv. Funct. Mater. 32, 2107404. doi: 10.1002/adfm.202107404
    Richardson, J.J., Björnmalm, M., Caruso, F., 2015. Multilayer assembly Technology-driven layer-by-layer assembly of nanofilms. Science 348, aaa2491. doi: 10.1126/science.aaa2491
    Richardson, J.J., Cui, J.W., Björnmalm, M., Braunger, J.A., Ejima, H., Caruso, F., 2016. Innovation in layer-by-layer assembly. Chem. Rev. 116, 14828–14867. doi: 10.1021/acs.chemrev.6b00627
    Rivero, P.J., Goicoechea, J., Arregui, F.J., 2019. Layer-by-layer nano-assembly: a powerful tool for optical fiber sensing applications. Sensors (Basel) 19, 683. doi: 10.3390/s19030683
    Romih, T., Menart, E., Jovanovski, V., Jerič, A., Andrenšek, S., Hočevar, S.B., 2020. Sodium-polyacrylate-based electrochemical sensors for highly sensitive detection of gaseous phenol at room temperature. ACS Sens 5, 2570–2577. doi: 10.1021/acssensors.0c00973
    Seong, B., Lee, H., Lee, J., Lin, L.W., Jang, H.S., Byun, D., 2018. Biomimetic, flexible, and self-healable printed silver electrode by spontaneous self-layering phenomenon of a gelatin scaffold. ACS Appl. Mater. Interfaces 10, 25666–25672. doi: 10.1021/acsami.8b10052
    Shahzadi, I., Islam, M., Saeed, H., Haider, A., Shahzadi, A., Haider, J., Ahmed, N., Ul-Hamid, A., Nabgan, W., Ikram, M., Rathore, H.A., 2022. Formation of biocompatible MgO/cellulose grafted hydrogel for efficient bactericidal and controlled release of doxorubicin. Int. J. Biol. Macromol. 220, 1277–1286. doi: 10.1016/j.ijbiomac.2022.08.142
    Shaibani, P.M., Etayash, H., Jiang, K.R., Sohrabi, A., Hassanpourfard, M., Naicker, S., Sadrzadeh, M., Thundat, T., 2018. Portable nanofiber-light addressable potentiometric sensor for rapid Escherichia coli detection in orange juice. ACS Sens. 3, 815–822. doi: 10.1021/acssensors.8b00063
    Shen, K.X., Xu, K., Zhang, M.Y., Yu, J., Yang, Y.X., Zhao, X.D., Zhang, Q., Wu, Y.S., Zhang, Y.F., Cheng, Y.L., 2023. Multiple hydrogen bonds reinforced conductive hydrogels with robust elasticity and ultra-durability as multifunctional ionic skins. Chem. Eng. J. 451, 138525. doi: 10.1016/j.cej.2022.138525
    Shih, H., Lin, C.C., 2012. Cross-linking and degradation of step-growth hydrogels formed by thiol-ene photoclick chemistry. Biomacromolecules 13, 2003–2012. doi: 10.1021/bm300752j
    Shin, J., Choi, S.J., Lee, I., Youn, D.Y., Park, C.O., Lee, J.H., Tuller, H.L., Kim, I.D., 2013. Thin-wall assembled SnO2 fibers functionalized by catalytic Pt nanoparticles and their superior exhaled-breath-sensing properties for the diagnosis of diabetes. Adv. Funct. Mater. 23, 2357–2367. doi: 10.1002/adfm.201202729
    Simińska-Stanny, J., Nizioł, M., Szymczyk-Ziółkowska, P., Brożyna, M., Junka, A., Shavandi, A., Podstawczyk, D., 2022. 4D printing of patterned multimaterial magnetic hydrogel actuators. Addit. Manuf. 49, 102506.
    Skorb, E.V., Andreeva, D.V., 2013. Layer-by-Layer approaches for formation of smart self-healing materials. Polym. Chem. 4, 4834–4845. doi: 10.1039/c3py00088e
    Sohail, M., Mudassir-Minhas, M.U., Khan, S., Hussain, Z., de Matas, M., Shah, S.A., Khan, S., Kousar, M., Ullah, K., 2019. Natural and synthetic polymer-based smart biomaterials for management of ulcerative colitis: a review of recent developments and future prospects. Drug Deliv. Transl. Res. 9, 595–614. doi: 10.1007/s13346-018-0512-x
    Song, E.H., Chen, M.H., Chen, Z.T., Zhou, Y.Y., Zhou, W.J., Sun, H.T., Yang, X.F., Gan, J.L., Ye, S., Zhang, Q.Y., 2022. Mn2+-activated dual-wavelength emitting materials toward wearable optical fibre temperature sensor. Nat. Commun. 13, 2166. doi: 10.1038/s41467-022-29881-6
    Song, W.J., Xin, J.N., Zhang, J.W., 2017. One-pot synthesis of soy protein (SP)-poly(acrylic acid) (PAA) superabsorbent hydrogels via facile preparation of SP macromonomer. Ind. Crops Prod. 100, 117–125. doi: 10.1016/j.indcrop.2017.02.018
    Sopoušek, J., Věžník, J., Skládal, P., Lacina, K., 2020. Blocking the nanopores in a layer of nonconductive nanoparticles: dominant effects therein and challenges for electrochemical impedimetric biosensing. ACS Appl. Mater. Interfaces 12, 14620–14628. doi: 10.1021/acsami.0c02650
    Su, G.H., Yin, S.Y., Guo, Y.H., Zhao, F., Guo, Q.Q., Zhang, X.X., Zhou, T., Yu, G.H., 2021. Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications. Mater. Horiz. 8, 1795–1804. doi: 10.1039/d1mh00085c
    Sui, X.J., Guo, H.S., Cai, C.C., Li, Q.S., Wen, C.Y., Zhang, X.Y., Wang, X.D., Yang, J., Zhang, L., 2021. Ionic conductive hydrogels with long-lasting antifreezing, water retention and self-regeneration abilities. Chem. Eng. J. 419, 129478. doi: 10.1016/j.cej.2021.129478
    Swilem, A.E., Elshazly, A.H.M., Hamed, A.A., Hegazy, E. S A., Abd El-Rehim, H.A., 2020. Nanoscale poly(acrylic acid)-based hydrogels prepared via a green single-step approach for application as low-viscosity biomimetic fluid tears. Mater. Sci. Eng. C Mater. Biol. Appl. 110, 110726. doi: 10.1016/j.msec.2020.110726
    Tan, K., Ma, W.B., Chen, L.H., Wang, H.M., Du, Q., Du, P.J., Yan, B.K., Liu, R.Y., Li, H.D., 2021. Estimating the distribution trend of soil heavy metals in mining area from HyMap airborne hyperspectral imagery based on ensemble learning. J. Hazard. Mater. 401, 123288. doi: 10.1016/j.jhazmat.2020.123288
    Tan, Z.Y., Li, X., Yu, C.J., Yao, M.M., Zhao, Z.M., Guo, B.Y., Liang, L., Wei, Y.P., Yao, F.L., Zhang, H., Li, J.J., 2023. A self-gelling powder based on polyacrylic acid/polyacrylamide/quaternate chitosan for rapid hemostasis. Int. J. Biol. Macromol. 232, 123449. doi: 10.1016/j.ijbiomac.2023.123449
    Tekoglu, S., Wielend, D., Scharber, M.C., Sariciftci, N.S., Yumusak, C., 2020. Conducting polymer-based biocomposites using deoxyribonucleic acid (DNA) as counterion. Adv. Mater. Technol. 5, 1900699. doi: 10.1002/admt.201900699
    Tran, M.Q., Liu, M.K., Elsisi, M., 2022. Effective multi-sensor data fusion for chatter detection in milling process. ISA Trans. 125, 514–527. doi: 10.1016/j.isatra.2021.07.005
    Tumu, K., Vorst, K., Curtzwiler, G., 2023. Endocrine modulating chemicals in food packaging: a review of phthalates and bisphenols. Compr. Rev. Food Sci. Food Saf. 22, 1337–1359. doi: 10.1111/1541-4337.13113
    Vaiano, V., Matarangolo, M., Murcia, J.J., Rojas, H., Navío, J.A., Hidalgo, M.C., 2018. Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag. Appl. Catal. B Environ. 225, 197–206. doi: 10.1016/j.apcatb.2017.11.075
    Viola, M., Migliorini, C., Matricardi, P., Di Meo, C., 2023. Synthesis and characterization of a novel amphiphilic polyacrylate-cholesterol derivative as promising material for pharmaceutical and cosmetic applications. Eur. Polym. J. 184, 111774. doi: 10.1016/j.eurpolymj.2022.111774
    Wang, F.D., Hu, S., Jia, Q.X., Zhang, L.Q., 2020. Advances in electrospinning of natural biomaterials for wound dressing. J. Nanomater. 2020, 8719859.
    Wang, F.F., Zhang, C.L., Qu, X.T., Cheng, S.S., Xian, Y.Z., 2019. Cationic cyanine chromophore-assembled upconversion nanoparticles for sensing and imaging H2S in living cells and zebrafish. Biosens. Bioelectron. 126, 96–101. doi: 10.1016/j.bios.2018.10.056
    Wang, H.Q., Li, J.C., Yu, X., Yan, G.H., Tang, X., Sun, Y., Zeng, X.H., Lin, L., 2021a. Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion. Carbohydr. Polym. 255, 117443. doi: 10.1016/j.carbpol.2020.117443
    Wang, L.P., Zhou, S.X., Wang, X., Lu, Q.B., Shi, L.S., Ren, X., Zhang, H.Y., Wang, Y.F., Lin, S.H., Zhang, C.H., Geng, M.J., Zhang, X.A., Li, J., Zhao, S.W., Yi, Z.G., Chen, X., Yang, Z.S., Meng, L., Wang, X.H., Liu, Y.L., Cui, A.L., Lai, S.J., Liu, M.Y., Zhu, Y.L., Xu, W.B., Chen, Y., Wu, J.G., Yuan, Z.H., Li, M.F., Huang, L.Y., Li, Z.J., Liu, W., Fang, L.Q., Jing, H.Q., Hay, S.I., Gao, G.F., Yang, W.Z., Chinese Centers for Disease Control and Prevention Etiology of Diarrhea Surveillance Study Team, 2021b. Etiological, epidemiological, and clinical features of acute diarrhea in China. Nat. Commun. 12, 2464. doi: 10.1038/s41467-021-22551-z
    Wang, X.X., Yu, G.F., Zhang, J., Yu, M., Ramakrishna, S., Long, Y.Z., 2021c. Conductive polymer ultrafine fibers via electrospinning: preparation, physical properties and applications. Prog. Mater. Sci. 115, 100704. doi: 10.1016/j.pmatsci.2020.100704
    Wang, Y.T., Fang, X., Li, S.H., Pan, H.Y., Sun, J.Q., 2023. Complexation of sulfonate-containing polyurethane and polyacrylic acid enables fabrication of self-healing hydrogel membranes with high mechanical strength and excellent elasticity. ACS Appl. Mater. Interfaces 15, 25082–25090. doi: 10.1021/acsami.1c21002
    Wei, J.J., Zhang, X.H., Wang, F., Shao, Y., Zhang, W.B., Wu, H., 2023. One-step preparation of highly viscoelastic, stretchable, antibacterial, biocompatible, wearable, conductive composite hydrogel with extensive adhesion. Compos. Sci. Technol. 231, 109793. doi: 10.1016/j.compscitech.2022.109793
    Wen, Y.Y., Li, R., Liu, J.H., Zhang, X., Wang, P., Zhang, X., Zhou, B., Li, H.Y., Wang, J., Li, Z.X., Sun, B.G., 2020. Promotion effect of Zn on 2D bimetallic NiZn metal organic framework nanosheets for tyrosinase immobilization and ultrasensitive detection of phenol. Anal. Chim. Acta 1127, 131–139. doi: 10.1016/j.aca.2020.06.062
    Wijayaratna, U., Kiridena, S., Adams, J.D., Behrend, C.J., Anker, J.N., 2021. Synovial fluid pH sensor for early detection of prosthetic hip infections. Adv. Funct. Mater. 31, 2104124. doi: 10.1002/adfm.202104124
    Wikswo, M.E., Roberts, V., Marsh, Z., Manikonda, K., Gleason, B., Kambhampati, A., Mattison, C., Calderwood, L., Balachandran, N., Cardemil, C., Hall, A.J., 2022. Enteric illness outbreaks reported through the national outbreak reporting system-United States, 2009-2019. Clin. Infect. Dis. 74, 1906–1913. doi: 10.1093/cid/ciab771
    Wu, L.J., Zhu, W.K., Li, Z.Q., Li, H.M., Xu, J., Li, S., Chen, M.L., 2023. Urushiol modified epoxy acrylate as UV spray painting oriental lacquer ink. RSC Adv. 13, 1106–1114. doi: 10.1039/d2ra06685h
    Xia, S., Zhang, Q., Song, S.X., Duan, L.J., Gao, G.H., 2019. Bioinspired dynamic cross-linking hydrogel sensors with skin-like strain and pressure sensing behaviors. Chem. Mater. 31, 9522–9531. doi: 10.1021/acs.chemmater.9b03919
    Xiao, X.Q., Mu, B.Y., Cao, G.Q., Yang, Y.Y., Wang, M., 2022. Flexible battery-free wireless electronic system for food monitoring. J. Sci. Adv. Mater. Devices 7, 100430. doi: 10.1016/j.jsamd.2022.100430
    Xu, Y., Bai, P., Zhou, X.D., Akimov, Y., Png, C.E., Ang, L.K., Knoll, W., Wu, L., 2019. Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth. Adv. Opt. Mater. 7, 1801433. doi: 10.1002/adom.201801433
    Xuan, H.Y., Dai, W., Zhu, Y.X., Ren, J.Y., Zhang, J.H., Ge, L.Q., 2018. Self-Healing, antibacterial and sensing nanoparticle coating and its excellent optical applications. Sens. Actuat. B Chem. 257, 1110–1117. doi: 10.1016/j.snb.2017.11.078
    Yan, Z.G., Wang, L.L., Xia, Y.F., Qiu, R.D., Liu, W.Q., Wu, M., Zhu, Y., Zhu, S.L., Jia, C.Y., Zhu, M.M., Cao, R.R., Li, Z.L., Wang, X., 2021. Flexible high-resolution triboelectric sensor array based on patterned laser-induced graphene for self-powered real-time tactile sensing. Adv. Funct. Mater. 31, 2100709. doi: 10.1002/adfm.202100709
    Yang, B.S., Chen, W.H., Zhou, X.H., Meng, F.D., Chen, C.Y., Liu, Q., Li, Q., Wang, X., Xu, P., Lei, Y.F., Xue, L.J., 2022. Strong and crack-resistant hydrogel derived from pomelo peel for highly sensitive wearable sensors. Chem. Eng. J. 431, 134094. doi: 10.1016/j.cej.2021.134094
    Yang, F.C., Zhao, J.C., Koshut, W.J., Watt, J., Riboh, J.C., Gall, K., Wiley, B.J., 2020. A synthetic hydrogel composite with the mechanical behavior and durability of cartilage. Adv. Funct. Mater. 30, 2003451. doi: 10.1002/adfm.202003451
    Yang, J.C., Mun, J., Kwon, S.Y., Park, S., Bao, Z.N., Park, S., 2019. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31, e1904765. doi: 10.1002/adma.201904765
    Yang, M., Zhang, Z.C., Yuan, F.Z., Deng, R.H., Yan, X., Mao, F.B., Chen, Y.R., Lu, H., Yu, J.K., 2023. An immunomodulatory polypeptide hydrogel for osteochondral defect repair. Bioact. Mater. 19, 678–689.
    Yu, Z., Zhang, Y., Gao, Z.J., Ren, X.Y., Gao, G.H., 2017. Enhancing mechanical strength of hydrogels via IPN structure. J. Appl. Polym. Sci. 134: 44503. doi: 10.1002/app.44503
    Yuan, W.Y., Weng, G.M., Lipton, J., Li, C.M., Van Tassel, P.R., Taylor, A.D., 2020. Weak polyelectrolyte-based multilayers via layer-by-layer assembly: Approaches, properties, and applications. Adv. Colloid Interface Sci. 282, 102200. doi: 10.1016/j.cis.2020.102200
    Yuan, X.F., Ou, C., Wang, Y.L., Yang, C.H., Gui, W.H., 2021a. A layer-wise data augmentation strategy for deep learning networks and its soft sensor application in an industrial hydrocracking process. IEEE Trans. Neural Netw. Learn. Syst. 32, 3296–3305. doi: 10.1109/tnnls.2019.2951708
    Yuan, Y., Shen, S.H., Fan, D.D., 2021b. A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound healing: shape adaptability, injectable self-healing property and enhanced adhesion. Biomaterials 276, 120838. doi: 10.1016/j.biomaterials.2021.120838
    Yue, X.C., Ma, N.L., Sonne, C., Guan, R.R., Lam, S.S., Van Le, Q., Chen, X.M., Yang, Y.F., Gu, H.P., Rinklebe, J., Peng, W.X., 2021. Mitigation of indoor air pollution: a review of recent advances in adsorption materials and catalytic oxidation. J. Hazard. Mater. 405, 124138. doi: 10.1016/j.jhazmat.2020.124138
    Zhai, D.Y., Liu, B.R., Shi, Y., Pan, L.J., Wang, Y.Q., Li, W.B., Zhang, R., Yu, G.H., 2013. Highly sensitive glucose sensor based on pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 7, 3540–3546. doi: 10.1021/nn400482d
    Zhang, H., Guo, J.H., Wang, Y., Sun, L.Y., Zhao, Y.J., 2021a. Stretchable and conductive composite structural color hydrogel films as bionic electronic skins. Adv. Sci. 8, e2102156. doi: 10.1002/advs.202102156
    Zhang, J.C., Zhuang, J.S., Lei, L.R., Hou, Y., 2023. Rapid preparation of a self-adhesive PAA ionic hydrogel using lignin sulfonate–Al3+ composite systems for flexible moisture-electric generators. J. Mater. Chem. A 11, 3546–3555. doi: 10.1039/d2ta09687k
    Zhang, J.X., Gai, M.Y., Ignatov, A.V., Dyakov, S.A., Wang, J., Gippius, N.A., Frueh, J., Sukhorukov, G.B., 2020a. Stimuli-responsive microarray films for real-time sensing of surrounding media, temperature, and solution properties via diffraction patterns. ACS Appl. Mater. Interfaces 12, 19080–19091. doi: 10.1021/acsami.0c05349
    Zhang, L., Sun, L., Su, T., Chen, T.T., Hu, L.H., He, F., Xu, H., 2022a. Graphene-based hydrogel with embedded gold nanoparticles as a recyclable catalyst for the degradation of 4-nitrophenol. Colloids Surf. A Physicochem. Eng. Aspects 640, 128410. doi: 10.1016/j.colsurfa.2022.128410
    Zhang, S., Zheng, Y., Lu, Y.L., Xie, B., Chen, D.Y., Wang, J.B., Chen, J., 2022b. Reduction of temperature sensitivity for resonant micro-pressure sensor using glass-silicon coupling wafer packaging. IEEE Sens. J. 22, 6410–6417. doi: 10.1109/jsen.2022.3152922
    Zhang, X.M., Wan, H.N., Lan, W.W., Miao, F.Y., Qin, M., Wei, Y., Hu, Y.C., Liang, Z.W., Huang, D., 2022c. Fabrication of adhesive hydrogels based on poly(acrylic acid) and modified hyaluronic acid. J. Mech. Behav. Biomed. Mater. 126, 105044. doi: 10.1016/j.jmbbm.2021.105044
    Zhang, Y.N., Zhang, L.B., Han, B., Gao, P., Wu, Q.L., Zhang, A.Z., 2018. Reflective mercury ion and temperature sensor based on a functionalized no-core fiber combined with a fiber Bragg grating. Sens. Actuat. B Chem. 272, 331–339. doi: 10.1016/j.snb.2018.05.168
    Zhang, Y.S., Khademhosseini, A., 2017. Advances in engineering hydrogels. Science 356, eaaf3627. doi: 10.1126/science.aaf3627
    Zhang, Z.H., Chen, Z.Y., Wang, Y., Zhao, Y.J., 2020b. Bioinspired conductive cellulose liquid-crystal hydrogels as multifunctional electrical skins. Proc. Natl. Acad. Sci. USA 117, 18310–18316. doi: 10.1073/pnas.2007032117
    Zhang, Z.H., Wang, X., Wang, X.J., Li, Y.S., Hong, M., 2021b. Tris (2, 4-difluorophenyl) borane/Triisobutylphosphine lewis pair: a thermostable and Air/Moisture-tolerant organic catalyst for the living polymerization of acrylates. Macromolecules 54, 8495–8502. doi: 10.1021/acs.macromol.1c01356
    Zhang, Z.Y., Yang, Y.H., Ding, H., Wang, D., Chen, W., Lin, H., 2021c. Design powerful predictor for mRNA subcellular location prediction in Homo sapiens. Brief. Bioinform. 22, 526–535. doi: 10.1093/bib/bbz177
    Zhao, C., Wang, Y.J., Tang, G.Q., Ru, J., Zhu, Z.C., Li, B., Guo, C.F., Li, L.J., Zhu, D.L., 2022a. Ionic flexible sensors: mechanisms, materials, structures, and applications. Adv. Funct. Mater. 32, 2110417. doi: 10.1002/adfm.202110417
    Zhao, F.L., Yao, D., Guo, R.W., Deng, L.D., Dong, A.J., Zhang, J.H., 2015. Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterials (Basel) 5, 2054–2130. doi: 10.3390/nano5042054
    Zhao, Q., Yang, X.X., Ma, C.X., Chen, D., Bai, H., Li, T.F., Yang, W., Xie, T., 2016. A bioinspired reversible snapping hydrogel assembly. Mater. Horiz. 3, 422–428. doi: 10.1039/C6MH00167J
    Zhao, Q.Y., Du, Q.X., Yang, Y., Zhao, Z.Y., Cheng, J., Bi, F.K., Shi, X.Y., Xu, J.C., Zhang, X.D., 2022b. Effects of regulator ratio and guest molecule diffusion on VOCs adsorption by defective UiO-67: Experimental and theoretical insights. Chem. Eng. J. 433, 134510. doi: 10.1016/j.cej.2022.134510
    Zhao, X.H., Chen, X.Y., Yuk, H., Lin, S.T., Liu, X.Y., Parada, G., 2021. Soft materials by design: unconventional polymer networks give extreme properties. Chem. Rev. 121, 4309–4372. doi: 10.1021/acs.chemrev.0c01088
    Zheng, C.X., Lu, K.Y., Lu, Y., Zhu, S.L., Yue, Y.Y., Xu, X.W., Mei, C.T., Xiao, H.N., Wu, Q.L., Han, J.Q., 2020. A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion. Carbohydr. Polym. 250, 116905. doi: 10.1016/j.carbpol.2020.116905
    Zheng, S.J., Li, W.Z., Ren, Y.Y., Liu, Z.Y., Zou, X.Y., Hu, Y., Guo, J.N., Sun, Z., Yan, F., 2022. Moisture-Wicking, breathable, and intrinsically antibacterial electronic skin based on dual-gradient poly(ionic liquid) nanofiber membranes. Adv. Mater. 34, e2106570. doi: 10.1002/adma.202106570
    Zhong, Y.B., Li, P.P., Hao, J.C., Wang, X., 2020. Bioinspired self-healing of kinetically inert hydrogels mediated by chemical nutrient supply. ACS Appl. Mater. Interfaces 12, 6471–6478. doi: 10.1021/acsami.9b20445
    Zhou, H.W., Wang, Z.W., Zhao, W.F., Tong, X.M., Jin, X.L., Zhang, X.C., Yu, Y., Liu, H.B., Ma, Y.C., Li, S.S., Chen, W.X., 2021. Robust and sensitive pressure/strain sensors from solution processable composite hydrogels enhanced by hollow-structured conducting polymers. Chem. Eng. J. 403, 126307. doi: 10.1016/j.cej.2020.126307
    Zhou, Q.Q., Dai, H.Q., Yan, Y.K., Qin, Z.M., Zhou, M.Q., Zhang, W.L., Zhang, G.Q., Guo, R.Q., Wei, X.L., 2024. From short circuit to completed circuit: conductive hydrogel facilitating oral wound healing. Adv. Healthc. Mater. 13, e2303143. doi: 10.1002/adhm.202303143
    Zhu, P.H., Kuang, Y.D., Wei, Y., Li, F., Ou, H.J., Jiang, F., Chen, G., 2021. Electrostatic self-assembly enabled flexible paper-based humidity sensor with high sensitivity and superior durability. Chem. Eng. J. 404, 127105. doi: 10.1016/j.cej.2020.127105
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (50) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return