Citation: | Xin Wang, Yang Liu, Shiyu Luo, Baojie Liu, Shuangquan Yao, Chengrong Qin, Shuangfei Wang, Chen Liang. Structural characteristics of hemicelluloses and lignin-carbohydrate complexes in alkaline-extracted bamboo green, core, and yellow[J]. Journal of Bioresources and Bioproducts, 2025, 10(3): 386-396. doi: 10.1016/j.jobab.2025.01.004 |
Abidi, N., Cabrales, L., Haigler, C.H., 2014. Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohydr. Polym. 100, 9–16.
|
Bai, Z.Y., Lv, Z.W., Rao, J., Sun, D., Hu, Y.J., Yue, P.P., Tian, R., Lü, B.Z., Bian, J., Peng, F., 2022. The effect of bamboo (Phyllostachys pubescens) cell types on the structure of hemicelluloses. Ind. Crops Prod. 187, 115464.
|
Balakshin, M., Capanema, E., Gracz, H., Chang, H.M., Jameel, H., 2011. Quantification of lignin-carbohydrate linkages with high-resolution NMR spectroscopy. Planta 233, 1097–1110. doi: 10.1007/s00425-011-1359-2
|
Barana, D., Ali, S.D., Salanti, A., Orlandi, M., Castellani, L., Hanel, T., Zoia, L., 2016. Influence of lignin features on thermal stability and mechanical properties of natural rubber compounds. ACS Sustainable Chem. Eng. 4, 5258–5267. doi: 10.1021/acssuschemeng.6b00774
|
Björkman, A., 1954. Isolation of lignin from finely divided wood with neutral solvents. Nature 174, 1057–1058. doi: 10.1038/1741057a0
|
Chen, M., Guo, L., Ramakrishnan, M., Fei, Z.J., Vinod, K.K., Ding, Y.L., Jiao, C., Gao, Z.P., Zha, R.F., Wang, C.Y., Gao, Z.M., Yu, F., Ren, G.D., Wei, Q., 2022. Rapid growth of moso bamboo (Phyllostachys edulis): cellular roadmaps, transcriptome dynamics, and environmental factors. Plant Cell 34, 3577–3610. doi: 10.1093/plcell/koac193
|
Cheng, X.C., Wei, Y.N., Yuan, L.L., Qin, Z., Liu, H.M., Wang, X.D., 2023. Structural characterization of lignin-carbohydrate complexes from Chinese quince fruits extracted after enzymatic hydrolysis pretreatment. Int. J. Biol. Macromol. 246, 125664.
|
De Bellis, D., Kalmbach, L., Marhavy, P., Daraspe, J., Geldner, N., Barberon, M., 2022. Extracellular vesiculo-tubular structures associated with suberin deposition in plant cell walls. Nat. Commun. 13, 1489.
|
Fan, Q.D., Wei, W., Li, Y.C., Li, L.G., Huang, W.W., Wang, J.H., Cao, Y., Zhou, Z.W., 2023. Biomimetic bridging for reconstructing biomass components toward significantly enhanced films from the full composition of bamboo. ACS Sustain. Chem. Eng. 11, 3228–3237. doi: 10.1021/acssuschemeng.2c05692
|
Fan, Z.W., Xu, S.W., Liu, X., Cao, Q., Cao, Y.Z., Wu, X.X., 2023. Aspergillus niger infection weakens the robustness of bamboo-adhesive interphases by damaging the adhesive and detaching the interfacial bonding. Ind. Crops Prod. 204, 117402.
|
Ge, J.Y., Wu, Y.T., Han, Y.S., Qin, C.R., Nie, S.X., Liu, S.J., Wang, S.F., Yao, S.Q., 2020. Effect of hydrothermal pretreatment on the demineralization and thermal degradation behavior of Eucalyptus. Bioresour. Technol. 307, 123246.
|
Giummarella, N., Lawoko, M., 2017. Structural insights on recalcitrance during hydrothermal hemicellulose extraction from wood. ACS Sustain. Chem. Eng. 5, 5156–5165. doi: 10.1021/acssuschemeng.7b00511
|
Giummarella, N., Pu, Y.Q., Ragauskas, A.J., Lawoko, M., 2019. A critical review on the analysis of lignin carbohydrate bonds. Green. Chem. 21, 1573–1595. doi: 10.1039/c8gc03606c
|
Han, J.Z., You, X., Wang, S.F., Chen, C., Yao, S.Q., Meng, C.M., Liang, C., Zhao, J.W., 2022. Chlorine dioxide oxidation of hemicellulose from alkaline hydrolysate bagasse to remove lignin unit in lignin-carbohydrate complex. Carbohydr. Polym. 277, 118817.
|
He, M.X., Wang, J.L., Qin, H., Shui, Z.X., Zhu, Q.L., Wu, B., Tan, F.R., Pan, K., Hu, Q.C., Dai, L.C., Wang, W.G., Tang, X.Y., Hu, G.Q., 2014. Bamboo: a new source of carbohydrate for biorefinery. Carbohydr. Polym. 111, 645–654.
|
Huang, C.X., He, J., Du, L.T., Min, D.Y., Yong, Q., 2016. Structural characterization of the lignins from the green and yellow bamboo of bamboo culm (Phyllostachys pubescens). J. Wood Chem. Technol. 36, 157–172. doi: 10.1080/02773813.2015.1104544
|
Huang, C.X., Tang, S., Zhang, W.Y., Tao, Y.H., Lai, C.H., Li, X., Yong, Q., 2018. Unveiling the structural properties of lignin–carbohydrate complexes in bamboo residues and its functionality as antioxidants and immunostimulants. ACS Sustain. Chem. Eng. 6, 12522–12531. doi: 10.1021/acssuschemeng.8b03262
|
Huang, D.L., Li, R.J., Xu, P., Li, T., Deng, R., Chen, S., Zhang, Q., 2020. The cornerstone of realizing lignin value-addition: exploiting the native structure and properties of lignin by extraction methods. Chem. Eng. J. 402, 126237.
|
Jiang, T., Feng, X.Y., Xia, Z.X., Deng, S.T., Wang, X.H., 2024. Gradient variation and correlation analysis of physical and mechanical properties of moso bamboo (Phyllostachys edulis). Materials 17, 2069. doi: 10.3390/ma17092069
|
Kang, K., Qiu, L., Sun, G.T., Zhu, M.Q., Yang, X.M., Yao, Y.Q., Sun, R.C., 2019. Codensification technology as a critical strategy for energy recovery from biomass and other resources - A review. Renew. Sustain. Energy Rev. 116, 109414.
|
Li, J., Liu, Z.M., Feng, C.Q., Liu, X.Y., Qin, F.Y., Liang, C., Bian, H.Y., Qin, C.R., Yao, S.Q., 2021. Green, efficient extraction of bamboo hemicellulose using freeze-thaw assisted alkali treatment. Bioresour. Technol. 333, 125107.
|
Li, Z.H., Chen, C.J., Xie, H., Yao, Y., Zhang, X., Brozena, A., Li, J.G., Ding, Y., Zhao, X.P., Hong, M., Qiao, H.Y., Smith, L.M., Pan, X.J., Briber, R., Shi, S.Q., Hu, L.B., 2022. Sustainable high-strength macrofibres extracted from natural bamboo. Nat. Sustain. 5, 235–244.
|
Li, Z.Q., Jiang, Z.H., Fei, B.H., Cai, Z.Y., Pan, X.J., 2014. Comparison of bamboo green, timber and yellow in sulfite, sulfuric acid and sodium hydroxide pretreatments for enzymatic saccharification. Bioresour. Technol. 151, 91–99.
|
Liu, Y.X., Sun, B., Zheng, X.F., Yu, L.F., Li, J.G., 2018. Integrated microwave and alkaline treatment for the separation between hemicelluloses and cellulose from cellulosic fibers. Bioresour. Technol. 247, 859–863.
|
Lv, Z.W., Bai, Z.Y., Su, L.Y., Rao, J., Hu, Y.J., Tian, R., Jia, S.Y., Guan, Y., Lü, B.Z., Peng, F., 2023. Unveiling lignin structures and lignin-carbohydrate complex (LCC) linkages of bamboo (Phyllostachys pubescens) fibers and parenchyma cells. Int. J. Biol. Macromol. 241, 124461.
|
Qin, Z., Wang, X.D., Liu, H.M., Wang, D.M., Qin, G.Y., 2018. Structural characterization of Chinese quince fruit lignin pretreated with enzymatic hydrolysis. Bioresour. Technol. 262, 212–220.
|
Rusch, F., Wastowski, A.D., de Lira, T.S., Kelly Costa Cabral Salazar Ramos Moreira, de Moraes Lúcio, D., 2023. Description of the component properties of species of bamboo: a review. Biomass Convers. Biorefin. 13, 2487–2495. doi: 10.1007/s13399-021-01359-3
|
Sawarkar, A.D., Shrimankar, D.D., Kumar, M., Kumar, P., Singh, L., 2023. Bamboos as a cultivated medicinal grass for industries: a systematic review. Ind. Crops Prod. 203, 117210.
|
Su, Q., Huang, A.Y., Chen, X.H., Dai, C.P., Fei, B.H., Fang, C.H., Ma, X.X., Sun, F.B., Zhang, X.B., Liu, H.R., 2023. Anisotropic tensile performance of bamboo parenchyma tissue and its influencing factors. Cellulose 30, 9147–9160. doi: 10.1007/s10570-023-05408-0
|
Tarasov, D., Leitch, M., Fatehi, P., 2018. Lignin-carbohydrate complexes: properties, applications, analyses, and methods of extraction: a review. Biotechnol. Biofuels 11, 269.
|
Wang, J., Wu, X.Y., Wang, Y.J., Zhao, W.Y., Zhao, Y., Zhou, M., Wu, Y., Ji, G.B., 2022a. Green, sustainable architectural bamboo with high light transmission and excellent electromagnetic shielding as a candidate for energy-saving buildings. Nanomicro Lett. 15, 11.
|
Wang, W.Y., Gao, J.H., Qin, Z., Liu, H.M., 2022b. Structural variation of lignin-carbohydrate complexes (LCC) in Chinese quince (Chaenomeles sinensis) fruit as it ripens. Int. J. Biol. Macromol. 223, 26–35.
|
Wang, X., Han, J.Z., Pang, S.Y., Li, J., Zhao, J.W., Qin, C.R., Yao, S.Q., Liu, Y., Liang, C., 2022c. Structural enrichment and identification of lignin-carbohydrate complex in alkaline stabilized system. Carbohydr. Polym. 296, 119873.
|
Wang, X., Liu, Y., Pu, J.L., Qin, C.R., Yao, S.Q., Wang, S.F., Liang, C., 2024a. A comparative study on the structure of lignin-carbohydrate complexes in alkali-soluble hemicellulose from bamboo (Bambusa chungii) fibers and parenchyma cells. Ind. Crops Prod. 210, 118061.
|
Wang, X., Pu, J.L., Liu, Y., Qin, C.R., Yao, S.Q., Wang, S.F., Liang, C., 2024b. Unveiling the dissolution regularities of the lignin-carbohydrate complex in bamboo cell walls during alkali pretreatment. J. Agric. Food Chem. 72, 10206–10217. doi: 10.1021/acs.jafc.3c09012
|
Wen, J.L., Sun, S.L., Xue, B.L., Sun, R.C., 2013a. Quantitative structural characterization of the lignins from the stem and pith of bamboo (Phyllostachys pubescens). Holzforschung. 67, 613–627. doi: 10.1515/hf-2012-0162
|
Wen, J.L., Sun, S.L., Xue, B.L., Sun, R.C., 2013b. Quantitative structures and thermal properties of birch lignins after ionic liquid pretreatment. J. Agric. Food Chem. 61, 635–645. doi: 10.1021/jf3051939
|
Yang, X.Y., Fu, M.Y., Xie, J.Z., Li, Z.C., 2009. Geographic variation and provenance selection for bamboo wood properties in Bambusa chungii. J. For. Res. 20, 261–267. doi: 10.1007/s11676-009-0045-8
|
Yuan, T.C., Wang, X.Z., Liu, X.R., Lou, Z.C., Mao, S.F., Li, Y.J., 2022. Bamboo flattening technology ebables efficient and value-added utilization of bamboo in the manufacture of furniture and engineered composites. Compos. Part B Eng. 242, 110097.
|
Yuan, T.Q., Sun, S.N., Xu, F., Sun, R.C., 2011. Characterization of lignin structures and lignin-carbohydrate complex (LCC) linkages by quantitative 13c and 2d hsqc nmr spectroscopy. J. Agric. Food Chem. 59, 10604–10614. doi: 10.1021/jf2031549
|
Zhang, C., Shen, X.J., Liu, M.Y., Wen, J.L., Yuan, T.Q., 2023. Uncovering the structure of lignin from moso bamboo with different tissues and growing ages for efficient ambient-pressure lignin depolymerization. ACS Sustain. Chem. Eng. 11, 13778–13786. doi: 10.1021/acssuschemeng.3c04206
|
Zhang, L.M., Gellerstedt, G., 2007. Quantitative 2D HSQC NMR determination of polymer structures by selecting suitable internal standard references. Magn. Reson. Chem. 45, 37–45. doi: 10.1002/mrc.1914
|
Zhang, W.B., Tian, G.L., Polle, A., Janz, D., Euring, D., Yue, X.H., Zhao, H.S., Fei, B.H., Jiang, Z.H., 2018. Comparative characterization of ethanol organosolv lignin polymer from bamboo green, timber and yellow. Wood Sci. Technol. 52, 1331–1341. doi: 10.1007/s00226-018-1019-9
|
Zhao, Y.H., Xie, X.Y., Wang, X.Z., Mao, S.F., Li, Y.J., 2024. In situ retention of lignin-rich bamboo green effectively improves the surface properties of flattened bamboo. Int. J. Biol. Macromol. 264, 130411.
|
Zheng, Y.X., Guan, F., Fan, S., Yan, X.R., Huang, L., 2021. Biomass estimation, nutrient content, and decomposition rate of shoot sheath in moso bamboo forest of Yixing Forest Farm, China. Forests 12, 1555. doi: 10.3390/f12111555
|
Zhong, Y.D., Wang, T., Yan, M., Miao, C., Zhou, X.F., Tong, G.L., 2022. High-value utilization of bamboo pulp black liquor lignin: preparation of silicon-carbide derived materials and its application. Int. J. Biol. Macromol. 217, 66–76.
|
Zhu, J.W., Ren, W.T., Guo, F., Wang, H.K., Yu, Y., 2024. Structural elucidation of lignin, hemicelluloses and LCC from both bamboo fibers and parenchyma cells. Int. J. Biol. Macromol. 274, 133341.
|