| Citation: | Syed Comail Abbas, Amna Alam, Md. Manik Mian, Colleen Walker, Yonghao Ni. Hydrothermal liquefaction of sewage sludge for circular bioeconomy: Focus on lignocellulose wastes, microplastics, and pharmaceuticals[J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 427-459. doi: 10.1016/j.jobab.2025.02.001 |
|
Aboughaly, M., Rizwanul Fattah, I.M., 2023. Environmental analysis, monitoring, and process control strategy for reduction of greenhouse gaseous emissions in thermochemical reactions. Atmosphere (Basel) 14, 655. doi: 10.3390/atmos14040655
|
|
Adedeji, O.M., Russack, J.S., Molnar, L.A., Bauer, S.K., 2022. Co-hydrothermal liquefaction of sewage sludge and beverage waste for high-quality bio-energy production. Fuel 324, 124757.
|
|
Adschiri, T., Lee, Y.W., Goto, M., Takami, S., 2011. Green materials synthesis with supercritical water. Green Chem 13, 1380–1390. doi: 10.1039/c1gc15158d
|
|
Ahmad, F., Silva, E.L., Varesche, M.B.A., 2018. Hydrothermal processing of biomass for anaerobic digestion–A review. Renew. Sustain. Energy Rev. 98, 108–124.
|
|
Ahn, J.H., Shin, S.G., Hwang, S., 2009. Effect of microwave irradiation on the disintegration and acidogenesis of municipal secondary sludge. Chem. Eng. J. 153, 145–150.
|
|
Akhtar, J., Amin, N.A.S., 2011. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew. Sustain. Energy Rev. 15, 1615–1624.
|
|
Akiya, N., Savage, P.E., 2002. Roles of water for chemical reactions in high-temperature water. Chem. Rev. 102, 2725–2750.
|
|
Amar, V.S., Houck, J.D., Maddipudi, B., Penrod, T.A., Shell, K.M., Thakkar, A., Shende, A.R., Hernandez, S., Kumar, S., Gupta, R.B., Shende, R.V., 2021. Hydrothermal liquefaction (HTL) processing of unhydrolyzed solids (UHS) for hydrochar and its use for asymmetric supercapacitors with mixed (Mn, Ti)-perovskite oxides. Renew. Energy 173, 329–341.
|
|
An, L.H., Liu, Q., Deng, Y.X., Wu, W.N., Gao, Y.Y., Ling, W., 2020. Sources of microplastic in the environment. In: He, D.F., Luo, Y.M. (Eds.), Microplastics in Terrestrial Environments. Springer International Publishing, Cham, pp. 143–159.
|
|
Anastasakis, K., Biller, P., Madsen, R.B., Glasius, M., Johannsen, I., 2018. Continuous hydrothermal liquefaction of biomass in a novel pilot plant with heat recovery and hydraulic oscillation. Energies 11, 2695. doi: 10.3390/en11102695
|
|
Anisimov, M.A., Sengers, J.V., Levelt Sengers, J.M.H., 2004. Near-critical behavior of aqueous systems. In: Palmer, D.A., Fernández-Prini, R., Harvey, A.H. (Eds.), Aqueous Systems at Elevated Temperatures and Pressures. Elsevier, Amsterdam, pp. 29–71.
|
|
Aston, J.E., Thompson, D.N., Westover, T.L., 2016. Performance assessment of dilute-acid leaching to improve corn stover quality for thermochemical conversion. Fuel 186, 311–319.
|
|
Attia, M., Farag, S., Chaouki, J., 2020. Upgrading of oils from biomass and waste: catalytic hydrodeoxygenation. Catalysts 10, 1381. doi: 10.3390/catal10121381
|
|
Audu, M., Wang, H.L., Arellano, D., Cheng, F., Dehghanizadeh, M., Jarvis, J.M., Yan, J.C., Brewer, C.E., Jena, U., 2021. Ash-pretreatment and hydrothermal liquefaction of filamentous algae grown on dairy wastewater. Algal. Res 57, 102282.
|
|
Aydın, S., Aydın, M.E., Ulvi, A., Kilic, H., 2019. Antibiotics in hospital effluents: occurrence, contribution to urban wastewater, removal in a wastewater treatment plant, and environmental risk assessment. Environ. Sci. Pollut. Res. Int. 26, 544–558. doi: 10.1007/s11356-018-3563-0
|
|
Aydın, S., Ulvi, A., Bedük, F., Aydın, M.E., 2022. Pharmaceutical residues in digested sewage sludge: occurrence, seasonal variation and risk assessment for soil. Sci. Total Environ. 817, 152864.
|
|
Badrolnizam, R.S., Elham, O.J., Hadzifah, S.N., Husain, M.N., Hidayu, A.R., Mohammad, N.F., Mohamad Daud, A.R., 2019. Sewage sludge conversion via hydrothermal liquefaction (HTL): a preliminary study. J. Phys.: Conf. Ser. 1349, 012108. doi: 10.1088/1742-6596/1349/1/012108
|
|
Bai, B., Jin, H., Fan, C., Cao, C.Q., Wei, W.W., Cao, W., 2019. Experimental investigation on liquefaction of plastic waste to oil in supercritical water. Waste Manag 89, 247–253.
|
|
Baloch, H.A., Siddiqui, M.T.H., Nizamuddin, S., Riaz, S., Haris, M., Mubarak, N.M., Griffin, G.J., Srinivasan, M.P., 2021. Effect of solvent on hydro-solvothermal co liquefaction of sugarcane bagasse and polyethylene for bio-oil production in ethanol-water system. Process. Saf. Environ. Prot. 148, 1060–1069.
|
|
Barber, W.P.F., 2016. Thermal hydrolysis for sewage treatment: a critical review. Water Res 104, 53–71.
|
|
Beims, R.F., Hu, Y.L., Shui, H.F., Xu, C.B., 2020. Hydrothermal liquefaction of biomass to fuels and value-added chemicals: products applications and challenges to develop large-scale operations. Biomass Bioenergy 135, 105510.
|
|
Bhatwadekar, S., Conti, F., Sharma, K., Lozano, E.M., Toor, S.S., Pedersen, T.H., 2022. Co-liquefaction of sewage sludge with wheat straw in supercritical water-potential for integrating hydrothermal liquefaction with wastewater treatment plants. Sustainable Energy Fuels 6, 1269–1280. doi: 10.1039/d1se01717a
|
|
Biller, P., Johannsen, I., Dos Passos, J.S., Ottosen, L.D.M., 2018. Primary sewage sludge filtration using biomass filter aids and subsequent hydrothermal co-liquefaction. Water Res 130, 58–68.
|
|
Biller, P., Lawson, D., Madsen, R.B., Becker, J., Iversen, B.B., Glasius, M., 2017. Assessment of agricultural crops and natural vegetation in Scotland for energy production by anaerobic digestion and hydrothermal liquefaction. Biomass Convers. Biorefin. 7, 467–477. doi: 10.1007/s13399-016-0230-x
|
|
Biller, P., Madsen, R.B., Klemmer, M., Becker, J., Iversen, B.B., Glasius, M., 2016. Effect of hydrothermal liquefaction aqueous phase recycling on bio-crude yields and composition. Bioresour. Technol. 220, 190–199.
|
|
Biller, P., Ross, A.B., 2011. Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour. Technol. 102, 215–225.
|
|
Bin Kabir, S., Khalekuzzaman, M., 2022. Co-liquefaction of organic solid waste with fecal sludge for producing petroleum-like biocrude for an integrated waste to energy approach. J. Clean. Prod. 354, 131718.
|
|
Bobleter, O., 1994. Hydrothermal degradation of polymers derived from plants. Prog. Polym. Sci. 19, 797–841.
|
|
Boel, M.J., Wang, H.Q., Farra, A.A., Megido, L., González-LaFuente, J.M., Shiju, N.R., 2024. Hydrothermal liquefaction of plastics: a survey of the effect of reaction conditions on the reaction efficiency. React. Chem. Eng. 9, 1014–1031. doi: 10.1039/d2re00510g
|
|
Brand, S., Hardi, F., Kim, J., Suh, D.J., 2014. Effect of heating rate on biomass liquefaction: differences between subcritical water and supercritical ethanol. Energy 68, 420–427.
|
|
Brindhadevi, K., Anto, S., Rene, E.R., Sekar, M., Mathimani, T., Thuy Lan Chi, N., Pugazhendhi, A., 2021. Effect of reaction temperature on the conversion of algal biomass to bio-oil and biochar through pyrolysis and hydrothermal liquefaction. Fuel 285, 119106.
|
|
Brunner, G., 2009. Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes. J. Supercrit. Fluids 47, 373–381.
|
|
Buendia-Kandia, F., Mauviel, G., Guedon, E., Rondags, E., Petitjean, D., Dufour, A., 2017. Decomposition of cellulose in hot-compressed water: detailed analysis of the products and effect of operating conditions. Energy Fuels 32, 4127–4138.
|
|
Bühler, W., Dinjus, E., Ederer, H.J., Kruse, A., Mas, C., 2002. Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near- and supercritical water. J. Supercrit. Fluids 22, 37–53.
|
|
Cao, L.C., Luo, G., Zhang, S.C., Chen, J.M., 2016a. Bio-oil production from eight selected green landscaping wastes through hydrothermal liquefaction. RSC Adv 6, 15260–15270.
|
|
Cao, L.C., Zhang, C., Chen, H.H., Tsang, D.C.W., Luo, G., Zhang, S.C., Chen, J.M., 2017. Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects. Bioresour. Technol. 245, 1184–1193.
|
|
Cao, L.C., Zhang, C., Hao, S.L., Luo, G., Zhang, S.C., Chen, J.M., 2016b. Effect of glycerol as co-solvent on yields of bio-oil from rice straw through hydrothermal liquefaction. Bioresour. Technol. 220, 471–478.
|
|
Caporgno, M.P., Clavero, E., Torras, C., Salvadó, J., Lepine, O., Pruvost, J., Legrand, J., Giralt, J., Bengoa, C., 2016. Energy and nutrients recovery from lipid-extracted Nannochloropsis via anaerobic digestion and hydrothermal liquefaction. ACS Sustainable Chem. Eng. 4, 3133–3139. doi: 10.1021/acssuschemeng.6b00151
|
|
Carpio, R.B., Zhang, Y.H., Kuo, C.T., Chen, W.T., Schideman, L.C., de Leon, R., 2021. Effects of reaction temperature and reaction time on the hydrothermal liquefaction of demineralized wastewater algal biomass. Bioresour. Technol. Rep. 14, 100679.
|
|
Carpio, R.B., Zhang, Y.H., Kuo, C.T., Chen, W.T., Schideman, L.C., de Leon, R.L., 2019. Characterization and thermal decomposition of demineralized wastewater algae biomass. Algal Res 38, 101399.
|
|
Chacón-Parra, A., Lewis, D., van Eyk, P., 2021. The effect of ethanol as a homogeneous catalyst on the reaction kinetics of hydrothermal liquefaction of lipids. Chem. Eng. J. 414, 128832.
|
|
Chanaka Udayanga, W.D., Veksha, A., Giannis, A., Lisak, G., Chang, V.W., Lim, T.T., 2018. Fate and distribution of heavy metals during thermal processing of sewage sludge. Fuel 226, 721–744.
|
|
Chand, R., Babu Borugadda, V., Qiu, M., Dalai, A.K., 2019. Evaluating the potential for bio-fuel upgrading: a comprehensive analysis of bio-crude and bio-residue from hydrothermal liquefaction of agricultural biomass. Appl. Energy 254, 113679.
|
|
Chand, R., Kohansal, K., Toor, S., Pedersen, T.H., Vollertsen, J., 2022. Microplastics degradation through hydrothermal liquefaction of wastewater treatment sludge. J. Clean. Prod. 335, 130383.
|
|
Chen, G.Y., Hu, M.T., Du, G.Y., Tian, S., He, Z.Y., Liu, B., Ma, W.C., 2019b. Hydrothermal liquefaction of sewage sludge by microwave pretreatment. Energy Fuels 34, 1145–1152.
|
|
Chen, P., Min, M., Chen, Y., Wang, L., Li, Y., Chen, Q., Wang, C., Wan, Y., Wang, X., Cheng, Y., 2009. Review of biological and engineering aspects of algae to fuels approach. Int J Agricultural Biol Engineer 2, 1–30.
|
|
Chen, P.H., Quinn, J.C., 2021. Microalgae to biofuels through hydrothermal liquefaction: open-source techno-economic analysis and life cycle assessment. Appl. Energy 289, 116613.
|
|
Chen, W.H., Chu, Y.S., Liu, J.L., Chang, J.S., 2018. Thermal degradation of carbohydrates, proteins and lipids in microalgae analyzed by evolutionary computation. Energy Convers. Manag. 160, 209–219.
|
|
Chen, W.T., Haque, M.A., Lu, T.F., Aierzhati, A., Reimonn, G., 2020. A perspective on hydrothermal processing of sewage sludge. Curr. Opin. Environ. Sci. Health 14, 63–73.
|
|
Chen, W.T., Jin, K., Linda Wang, N.H., 2019a. Use of supercritical water for the liquefaction of polypropylene into oil. ACS Sustainable Chem. Eng. 7, 3749–3758. doi: 10.1021/acssuschemeng.8b03841
|
|
Chen, W.T., Ma, J.C., Zhang, Y.H., Gai, C., Qian, W.Y., 2014b. Physical pretreatments of wastewater algae to reduce ash content and improve thermal decomposition characteristics. Bioresour. Technol. 169, 816–820.
|
|
Chen, W.T., Zhang, Y.H., Zhang, J.X., Schideman, L., Yu, G., Zhang, P., Minarick, M., 2014a. Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil. Appl. Energy 128, 209–216.
|
|
Chen, Y.X., Cao, X.D., Zhu, S., Tian, F.S., Xu, Y.Y., Zhu, C.S., Dong, L., 2019c. Synergistic hydrothermal liquefaction of wheat stalk with homogeneous and heterogeneous catalyst at low temperature. Bioresour. Technol. 278, 92–98.
|
|
Chen, Y.G., Wang, C., Lu, W.P., Yang, Z.Y., 2010. Study of the co-deoxy-liquefaction of biomass and vegetable oil for hydrocarbon oil production. Bioresour. Technol. 101, 4600–4607.
|
|
Chiaberge, S., Siviero, A., Passerini, C., Pavoni, S., Bianchi, D., Haider, M.S., Castello, D., 2021. Co-processing of hydrothermal liquefaction sewage sludge biocrude with a fossil crude oil by codistillation: a detailed characterization study by FTICR mass spectrometry. Energy Fuels 35, 13830–13839. doi: 10.1021/acs.energyfuels.1c01673
|
|
Ciuffi, B., Loppi, M., Rizzo, A.M., Chiaramonti, D., Rosi, L., 2021. Towards a better understanding of the HTL process of lignin-rich feedstock. Sci. Rep. 11, 15504.
|
|
Cole, A., Dinburg, Y., Haynes, B.S., He, Y.Y., Herskowitz, M., Jazrawi, C., Landau, M., Liang, X., Magnusson, M., Maschmeyer, T., Masters, A.F., Meiri, N., Neveux, N., de Nys, R., Paul, N., Rabaev, M., Vidruk-Nehemya, R., Yuen, A.K.L., 2016. From macroalgae to liquid fuel via waste-water remediation, hydrothermal upgrading, carbon dioxide hydrogenation and hydrotreating. Energy Environ. Sci. 9, 1828–1840.
|
|
Čolnik, M., Knez, Ž., Škerget, M., 2021. Sub- and supercritical water for chemical recycling of polyethylene terephthalate waste. Chem. Eng. Sci. 233, 116389.
|
|
Čolnik, M., Kotnik, P., Knez, Ž., Škerget, M., 2022. Chemical recycling of polyolefins waste materials using supercritical water. Polymers (Basel) 14, 4415. doi: 10.3390/polym14204415
|
|
Connelly, E.B., Colosi, L.M., Clarens, A.F., Lambert, J.H., 2015. Life cycle assessment of biofuels from algae hydrothermal liquefaction: the upstream and downstream factors affecting regulatory compliance. Energy Fuels 29, 1653–1661. doi: 10.1021/ef502100f
|
|
Cui, Z., Cheng, F., Jarvis, J.M., Brewer, C.E., Jena, U., 2020. Roles of co-solvents in hydrothermal liquefaction of low-lipid, high-protein algae. Bioresour. Technol. 310, 123454.
|
|
Dãrãban, I.M., Rosendahl, L.A., Pedersen, T.H., Iversen, S.B., 2015. Pretreatment methods to obtain pumpable high solid loading wood-water slurries for continuous hydrothermal liquefaction systems. Biomass Bioenergy 81, 437–443.
|
|
de Caprariis, B., De Filippis, P., Petrullo, A., Scarsella, M., 2017. Hydrothermal liquefaction of biomass: influence of temperature and biomass composition on the bio-oil production. Fuel 208, 618–625.
|
|
de Caprariis, B., Scarsella, M., Bavasso, I., Bracciale, M.P., Tai, L.Y., de Filippis, P., 2021. Effect of Ni, Zn and Fe on hydrothermal liquefaction of cellulose: impact on bio-crude yield and composition. J. Anal. Appl. Pyrolysis 157, 105225.
|
|
Del Alamo, G., Bugge, M., Pedersen, T.H., Rosendahl, L., 2022. Techno-economic analysis of the production of liquid biofuels from sewage sludge via hydrothermal liquefaction. Energy Fuels 37, 1131–1150.
|
|
Demirbas, A., Bamufleh, H.S., Edris, G., Al-Sasi, B.O., 2017. Biodiesel production from lipids of municipal sewage sludge by direct methanol transesterification. Energy Sources Part A Recovery Util. Environ. Eff 39, 800–805. doi: 10.1080/15567036.2016.1263259
|
|
Déniel, M., Haarlemmer, G., Roubaud, A., Weiss-Hortala, E., Fages, J., 2016. Energy valorisation of food processing residues and model compounds by hydrothermal liquefaction. Renew. Sustain. Energy Rev. 54, 1632–1652.
|
|
Dimitriadis, A., Bezergianni, S., 2017. Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: a state of the art review. Renew. Sustain. Energy Rev. 68, 113–125.
|
|
Do, T.X., Prajitno, H., Lim, Y.I., Kim, J., 2019. Process modeling and economic analysis for bio-heavy-oil production from sewage sludge using supercritical ethanol and methanol. J. Supercrit. Fluids 150, 137–146.
|
|
dos Passos, J.S., Glasius, M., Biller, P., 2020. Screening of common synthetic polymers for depolymerization by subcritical hydrothermal liquefaction. Process. Saf. Environ. Prot. 139, 371–379.
|
|
Dybka-Stępień, K., Antolak, H., Kmiotek, M., Piechota, D., Koziróg, A., 2021. Disposable food packaging and serving materials-trends and biodegradability. Polymers (Basel) 13, 3606. doi: 10.3390/polym13203606
|
|
Egle, L., Rechberger, H., Zessner, M., 2015. Overview and description of technologies for recovering phosphorus from municipal wastewater. Resour. Conserv. Recycl. 105, 325–346.
|
|
Ellersdorfer, M., 2020. Hydrothermal co-liquefaction of Chlorella vulgaris with food processing residues, green waste and sewage sludge. Biomass Bioenergy 142, 105796.
|
|
Fan, Q.W., Fu, P., Song, C.Y., Fan, Y.L., 2023a. Valorization of waste biomass through hydrothermal liquefaction: a review with focus on linking hydrothermal factors to products characteristics. Ind. Crops Prod. 191, 116017.
|
|
Fan, Y., Fonseca, F.G., Gong, M., Hoffmann, A., Hornung, U., Dahmen, N., 2021. Energy valorization of integrating lipid extraction and hydrothermal liquefaction of lipid-extracted sewage sludge. J. Clean. Prod. 285, 124895.
|
|
Fan, Y.J., Hornung, U., Dahmen, N., 2022a. Hydrothermal liquefaction of sewage sludge for biofuel application: a review on fundamentals, current challenges and strategies. Biomass Bioenergy 165, 106570.
|
|
Fan, Y., Hornung, U., Dahmen, N., Kruse, A., 2018. Hydrothermal liquefaction of protein-containing biomass: study of model compounds for Maillard reactions. Biomass Convers. Biorefin. 8, 909–923. doi: 10.1007/s13399-018-0340-8
|
|
Fan, Y.J., Meyer, L., Gong, M., Krause, B., Hornung, U., Dahmen, N., 2023b. Understanding the fate of nitrogen during catalytic hydrothermal liquefaction of sewage sludge. Fuel 339, 126948.
|
|
Fan, Y.J., Prestigiacomo, C., Gong, M., Tietz, T., Hornung, U., Dahmen, N., 2022b. Comparative investigation on the value-added products obtained from continuous and batch hydrothermal liquefaction of sewage sludge. Front. Environ. Sci. 10, 996353.
|
|
Feng, L.H., Hong, C., Xing, Y., Ling, W., Zhao, C.W., Hu, J.S., Wang, Y.J., 2023. Liquefaction of polystyrene(PS) waste plastics in supercritical ethanol and reaction pathway exploration. J. Anal. Appl. Pyrolysis 176, 106265.
|
|
Feng, S.H., Yuan, Z.S., Leitch, M., Xu, C.C., 2014. Hydrothermal liquefaction of barks into bio-crude: effects of species and ash content/composition. Fuel 116, 214–220.
|
|
Fonts, I., Gea, G., Azuara, M., Javier, Á., Arauzo, J., 2012. Sewage sludge pyrolysis for liquid production: a review. Renew. Sustain. Energy Rev. 16, 2781–2805.
|
|
Furimsky, E., Massoth, F.E., 2005. Hydrodenitrogenation of petroleum. Catal. Rev. 47, 297–489.
|
|
Fytili, D., Zabaniotou, A., 2008. Utilization of sewage sludge in EU application of old and new methods: a review. Renew. Sustain. Energy Rev. 12, 116–140.
|
|
Gai, C., Zhang, Y.H., Chen, W.T., Zhang, P., Dong, Y.P., 2015. An investigation of reaction pathways of hydrothermal liquefaction using Chlorella pyrenoidosa and Spirulina platensis. Energy Convers. Manag. 96, 330–339.
|
|
Gao, N.B., Kamran, K., Quan, C., Williams, P.T., 2020. Thermochemical conversion of sewage sludge: a critical review. Prog. Energy Combust. Sci. 79, 100843.
|
|
Gao, Y., Chen, H.P., Wang, J., Shi, T., Yang, H.P., Wang, X.H., 2011. Characterization of products from hydrothermal liquefaction and carbonation of biomass model compounds and real biomass. J. Fuel Chem. Technol. 39, 893–900.
|
|
Gao, Y.F., Wang, H.T., Guo, J.H., Peng, P., Zhai, M.Z., She, D., 2016. Hydrothermal degradation of hemicelluloses from triploid poplar in hot compressed water at 180-340 ℃. Polym. Degrad. Stab. 126, 179–187.
|
|
Gao, Y., Wang, X.H., Yang, H.P., Chen, H.P., 2012. Characterization of products from hydrothermal treatments of cellulose. Energy 42, 457–465.
|
|
Geng, H., Xu, Y., Zheng, L.K., Gong, H., Dai, L.L., Dai, X.H., 2020. An overview of removing heavy metals from sewage sludge: achievements and perspectives. Environ. Pollut. 266, 115375.
|
|
Ghadge, R., Nagwani, N., Saxena, N., Dasgupta, S., Sapre, A., 2022. Design and scale-up challenges in hydrothermal liquefaction process for biocrude production and its upgradation. Energy Convers. Manag. X 14, 100223.
|
|
Ghalandari, V., Smith, H., Volpe, M., Messineo, A., Reza, T., 2022. Effect of acidic hydrochar on plastic crude oil produced from hydrothermal liquefaction of waste PVC. Processes 10, 2538. doi: 10.3390/pr10122538
|
|
Gollakota, A.R.K., Kishore, N., Gu, S., 2018. A review on hydrothermal liquefaction of biomass. Renew. Sustain. Energy Rev. 81, 1378–1392.
|
|
Gong, M., Zhu, W., Xu, Z.R., Zhang, H.W., Yang, H.P., 2014. Influence of sludge properties on the direct gasification of dewatered sewage sludge in supercritical water. Renew. Energy 66, 605–611.
|
|
Goto, M., 2009. Chemical recycling of plastics using sub- and supercritical fluids. J. Supercrit. Fluids 47, 500–507.
|
|
Grifoni, M., Pedron, F., Rosellini, I., Petruzzelli, G., 2019. From Waste to resource: Sorption Properties of Biological and Industrial Sludge. In: Prasad, M.N.V., de Campos Favas, P.J., Vithanage, M., Mohan, S.V. (Eds.). Industrial and Municipal Sludge. Amsterdam: Elsevier, 595–621.
|
|
Grigoras, I.F., Stroe, R.E., Sintamarean, I.M., Rosendahl, L.A., 2017. Effect of biomass pretreatment on the product distribution and composition resulting from the hydrothermal liquefaction of short rotation coppice willow. Bioresour. Technol. 231, 116–123.
|
|
Guo, B.F., Yang, B.D., Su, Y., Zhang, S.C., Hornung, U., Dahmen, N., 2022. Screening and optimization of microalgae biomass and plastic material coprocessing by hydrothermal liquefaction. ACS ES&T Eng 2, 65–77. doi: 10.1021/acsestengg.1c00261
|
|
Guo, Y., Yeh, T., Song, W.H., Xu, D.H., Wang, S.Z., 2015. A review of bio-oil production from hydrothermal liquefaction of algae. Renew. Sustain. Energy Rev. 48, 776–790.
|
|
Gupta, D., Mahajani, S.M., Garg, A., 2019. Effect of hydrothermal carbonization as pretreatment on energy recovery from food and paper wastes. Bioresour. Technol. 285, 121329.
|
|
Hagen, J., 2015. Catalyst shapes and production of heterogeneous catalysts. Ind. Catal 211–238. doi: 10.1002/9783527684625.ch6
|
|
Haider, M.S., Castello, D., Rosendahl, L.A., 2020. Two-stage catalytic hydrotreatment of highly nitrogenous biocrude from continuous hydrothermal liquefaction: a rational design of the stabilization stage. Biomass Bioenergy 139, 105658.
|
|
Han, Y., Hoekman, K., Jena, U., Das, P., 2020. Use of co-solvents in hydrothermal liquefaction (HTL) of microalgae. Energies 13, 124.
|
|
Hao, B.T., Xu, D.H., Wang, Y., Wang, Y.Y., Kapusta, K., Guo, Y., 2023. Catalytic hydrothermal liquefaction of municipal sludge for biocrude production over non-noble bimetallic catalyst in ethanol solvent. Fuel 331, 125812.
|
|
Hao, B.T., Yang, W.P., Wang, Y., Xu, D.H., Kapusta, K., Guo, Y., 2022. Hydrothermal liquefaction of municipal sludge: coupling effects of temperature and time on nitrogen migration. J. Anal. Appl. Pyrolysis 165, 105562.
|
|
Havukainen, J., Saud, A., Astrup, T.F., Peltola, P., Horttanainen, M., 2022. Environmental performance of dewatered sewage sludge digestate utilization based on life cycle assessment. Waste Manag 137, 210–221.
|
|
He, C., Chen, C.L., Giannis, A., Yang, Y.H., Wang, J.Y., 2014. Hydrothermal gasification of sewage sludge and model compounds for renewable hydrogen production: a review. Renew. Sustain. Energy Rev. 39, 1127–1142.
|
|
He, C., Wang, K., Yang, Y.H., Amaniampong, P.N., Wang, J.Y., 2015. Effective nitrogen removal and recovery from dewatered sewage sludge using a novel integrated system of accelerated hydrothermal deamination and air stripping. Environ. Sci. Technol. 49, 6872–6880. doi: 10.1021/acs.est.5b00652
|
|
He, Y.Y., Liang, X., Jazrawi, C., Montoya, A., Yuen, A., Cole, A.J., Neveux, N., Paul, N.A., de Nys, R., Maschmeyer, T., Haynes, B.S., 2016. Continuous hydrothermal liquefaction of macroalgae in the presence of organic co-solvents. Algal Res 17, 185–195.
|
|
He, Z.W., Yang, W.J., Ren, Y.X., Jin, H.Y., Tang, C.C., Liu, W.Z., Yang, C.X., Zhou, A.J., Wang, A.J., 2021. Occurrence, effect, and fate of residual microplastics in anaerobic digestion of waste activated sludge: a state-of-the-art review. Bioresour. Technol. 331, 125035.
|
|
Hii, K., Baroutian, S., Parthasarathy, R., Gapes, D.J., Eshtiaghi, N., 2014. A review of wet air oxidation and thermal hydrolysis technologies in sludge treatment. Bioresour. Technol. 155, 289–299.
|
|
Hong, C., Wang, Z.Q., Si, Y.X., Li, Z.X., Xing, Y., Hu, J.S., Li, Y.F., 2021a. Effects of aqueous phase circulation and catalysts on hydrothermal liquefaction (HTL) of penicillin residue (PR): characteristics of the aqueous phase, solid residue and bio oil. Sci. Total Environ. 776, 145596.
|
|
Hong, C., Wang, Z.Q., Si, Y.X., Li, Z.X., Xing, Y., Hu, J.S., Li, Y.F., 2021b. Preparation of bio-oils by hydrothermal liquefaction (HTL) of penicillin fermentation residue (PR): optimization of conditions and mechanistic studies. Sci. Total Environ. 761, 143216.
|
|
Hong, C., Wang, Z.Q., Si, Y.X., Xing, Y., Yang, J., Feng, L.H., Wang, Y.J., Hu, J.S., Li, Z.X., Li, Y.F., 2021c. Catalytic hydrothermal liquefaction of penicillin residue for the production of bio-oil over different homogeneous/heterogeneous catalysts. Catalysts 11, 849. doi: 10.3390/catal11070849
|
|
Hongthong, S., Raikova, S., Leese, H.S., Chuck, C.J., 2020. Co-processing of common plastics with pistachio hulls via hydrothermal liquefaction. Waste Manag 102, 351–361.
|
|
Hrnčič, M.K., Kravanja, G., Knez, Ž., 2016. Hydrothermal treatment of biomass for energy and chemicals. Energy 116, 1312–1322.
|
|
Huang, H.J., Chang, Y.C., Lai, F.Y., Zhou, C.F., Pan, Z.Q., Xiao, X.F., Wang, J.X., Zhou, C.H., 2019. Co-liquefaction of sewage sludge and rice straw/wood sawdust: the effect of process parameters on the yields/properties of bio-oil and biochar products. Energy 173, 140–150.
|
|
Huang, H.J., Yuan, X.Z., 2016. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge. Bioresour. Technol. 200, 991–998.
|
|
Huang, H.J., Yuan, X.Z., Li, B.T., Xiao, Y.D., Zeng, G.M., 2014. Thermochemical liquefaction characteristics of sewage sludge in different organic solvents. J. Anal. Appl. Pyrolysis 109, 176–184.
|
|
Huang, H.J., Yuan, X.Z., Zeng, G.M., Zhu, H.N., Li, H., Liu, Z.F., Jiang, H.W., Leng, L.J., Bi, W.K., 2011. Quantitative evaluation of heavy metals' pollution hazards in liquefaction residues of sewage sludge. Bioresour. Technol. 102, 10346–10351.
|
|
Hušek, M., Moško, J., Pohořelý, M., 2022. Sewage sludge treatment methods and P-recovery possibilities: current state-of-the-art. J. Environ. Manage. 315, 115090.
|
|
Imran, M., Kim, B.K., Han, M., Cho, B.G., Kim, D.H., 2010. Sub- and supercritical glycolysis of polyethylene terephthalate (PET) into the monomer bis (2-hydroxyethyl) terephthalate (BHET). Polym. Degrad. Stab. 95, 1686–1693.
|
|
Inoue, S., Sawayama, S., Dote, Y., Ogi, T., 1997. Behaviour of nitrogen during liquefaction of dewatered sewage sludge. Biomass Bioenergy 12, 473–475.
|
|
Islam, M.B., Khalekuzzaman, M., Bin Kabir, S., Hossain, M.R., Alam, M.A., 2022. Substituting microalgal biomass with faecal sludge for high-quality biocrude production through co-liquefaction: a sustainable biorefinery approach. Fuel Process. Technol. 225, 107063.
|
|
Itoh, S., Suzuki, A., Nakamura, T., Yokoyama, S.Y., 1994. Production of heavy oil from sewage sludge by direct thermochemical liquefaction. Desalination 98, 127–133.
|
|
Itoh, S., Suzuki, A., Nakamura, T., Yokoyama, S., 1992. Direct thermochemical liquefaction of sewage sludge by a continuous plant. Water Sci. Technol. 26, 1175–1184. doi: 10.2166/wst.1992.0559
|
|
Jahromi, H., Rahman, T., Roy, P., Adhikari, S., 2022. Hydrotreatment of solvent-extracted biocrude from hydrothermal liquefaction of municipal sewage sludge. Energy Convers. Manag. 263, 115719.
|
|
Jarvis, J.M., Albrecht, K.O., Billing, J.M., Schmidt, A.J., Hallen, R.T., Schaub, T.M., 2018. Assessment of hydrotreatment for hydrothermal liquefaction biocrudes from sewage sludge, microalgae, and pine feedstocks. Energy Fuels 32, 8483–8493. doi: 10.1021/acs.energyfuels.8b01445
|
|
Jazrawi, C., Biller, P., Ross, A.B., Montoya, A., Maschmeyer, T., Haynes, B.S., 2013. Pilot plant testing of continuous hydrothermal liquefaction of microalgae. Algal Res 2, 268–277.
|
|
Jelic, A., Gros, M., Ginebreda, A., Cespedes-Sánchez, R., Ventura, F., Petrovic, M., Barcelo, D., 2011. Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res 45, 1165–1176.
|
|
Jensen, C.U., Rodriguez Guerrero, J.K., Karatzos, S., Olofsson, G., Iversen, S.B., 2017. Fundamentals of hydrofaction™: renewable crude oil from woody biomass. Biomass Convers. Biorefin. 7, 495–509. doi: 10.1007/s13399-017-0248-8
|
|
Jiang, Z.C., Zhao, P.P., Hu, C.W., 2018. Controlling the cleavage of the inter- and intra-molecular linkages in lignocellulosic biomass for further biorefining: a review. Bioresour. Technol. 256, 466–477.
|
|
Jin, H., Bai, B., Wei, W.W., Chen, Y.N., Ge, Z.W., Shi, J.W., 2020b. Hydrothermal liquefaction of polycarbonate (PC) plastics in sub-/supercritical water and reaction pathway exploration. ACS Sustainable Chem. Eng. 8, 7039–7050. doi: 10.1021/acssuschemeng.0c00700
|
|
Jin, K., Vozka, P., Gentilcore, C., Kilaz, G., Wang, N.L., 2021. Low-pressure hydrothermal processing of mixed polyolefin wastes into clean fuels. Fuel 294, 120505.
|
|
Jin, K., Vozka, P., Kilaz, G., Chen, W.T., Wang, N.L., 2020a. Conversion of polyethylene waste into clean fuels and waxes via hydrothermal processing (HTP). Fuel 273, 117726.
|
|
Kabyemela, B.M., Takigawa, M., Adschiri, T., Malaluan, R.M., Arai, K., 1998. Mechanism and kinetics of cellobiose decomposition in sub- and supercritical water. Ind. Eng. Chem. Res. 37, 357–361.
|
|
Kabyemela, B.M., Adschiri, T., Malaluan, R.M., Arai, K., 1997. Kinetics of glucose epimerization and decomposition in subcritical and supercritical water. Ind. Eng. Chem. Res. 36, 1552–1558.
|
|
Kacprzak, M., Neczaj, E., Fijałkowski, K., Grobelak, A., Grosser, A., Worwag, M., Rorat, A., Brattebo, H., Almås, Å., Singh, B.R., 2017. Sewage sludge disposal strategies for sustainable development. Environ. Res. 156, 39–46.
|
|
Kang, S.M., Li, X.L., Fan, J., Chang, J., 2011. Classified separation of lignin hydrothermal liquefied products. Ind. Eng. Chem. Res. 50, 11288–11296. doi: 10.1021/ie2011356
|
|
Kang, S.M., Li, X.L., Fan, J., Chang, J., 2013. Hydrothermal conversion of lignin: a review. Renew. Sustain. Energy Rev. 27, 546–558.
|
|
Kapusta, K., 2018. Effect of ultrasound pretreatment of municipal sewage sludge on characteristics of bio-oil from hydrothermal liquefaction process. Waste Manag 78, 183–190.
|
|
Karagöz, S., Bhaskar, T., Muto, A., Sakata, Y., 2005. Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment. Fuel 84, 875–884.
|
|
Khalekuzzaman, M., Fayshal, M.A., Fairooz Adnan, H.M., 2024. Production of low phenolic naphtha-rich biocrude through co-hydrothermal liquefaction of fecal sludge and organic solid waste using water-ethanol co-solvent. J. Clean. Prod. 436, 140593.
|
|
Kitahara, M., Oda, A., Ban, T., Osada, M., Watanabe, M., Sue, K., Arai, K., 2005. The chemical recycling of polycarbonates using supercritical water. Yokohama: The 54th SPSJ Annual Meeting 2005.
|
|
Kor-Bicakci, G., Eskicioglu, C., 2019. Recent developments on thermal municipal sludge pretreatment technologies for enhanced anaerobic digestion. Renew. Sustain. Energy Rev. 110, 423–443.
|
|
Kozlowski, R., Wladyka-Przybylak, M., Helwig, M., Kurzydłoski, K., 2004. Composites based on lignocellulosic raw materials. Mol. Cryst. Liq. Cryst. 418, 131–151.
|
|
Kruse, A., Gawlik, A., 2003. Biomass conversion in water at 330-410 ℃ and 30-50 MPa. Identification of key compounds for indicating different chemical reaction pathways. Ind. Eng. Chem. Res. 42, 267–279.
|
|
Kruse, A., Maniam, P., Spieler, F., 2007. Influence of proteins on the hydrothermal gasification and liquefaction of biomass. 2. model compounds. Ind. Eng. Chem. Res. 46, 87–96. doi: 10.1021/ie061047h
|
|
Kulikova, Y., Babich, O., Tsybina, A., Sukhikh, S., Mokrushin, I., Noskova, S., Orlov, N., 2022. Feasibility of thermal utilization of primary and secondary sludge from a biological wastewater treatment plant in Kaliningrad city. Energies 15, 5639. doi: 10.3390/en15155639
|
|
Kumar, M., Olajire Oyedun, A., Kumar, A., 2018. A review on the current status of various hydrothermal technologies on biomass feedstock. Renew. Sustain. Energy Rev. 81, 1742–1770.
|
|
Kümmerer, K., 2009. Antibiotics in the aquatic environment: a review: part Ⅰ. Chemosphere 75, 417–434.
|
|
Kwak, H., Shin, H.Y., Bae, S.Y., Kumazawa, H., 2006. Characteristics and kinetics of degradation of polystyrene in supercritical water. J. Appl. Polym. Sci. 101, 695–700. doi: 10.1002/app.23896
|
|
Lachos-Perez, D., Lu, T.F., Chen, W.T., 2023. Hydrothermal liquefaction of polyethylene and polypropylene: recent advances and future perspectives. In: Cheng, H.N., Gross, R.A. (Eds.). Sustainable Green Chemistry in Polymer Research. Volume 1. Biocatalysis and Biobased Materials. Washington: American Chemical Society, 101–116.
|
|
Lai, F.Y., Chang, Y.C., Huang, H.J., Wu, G.Q., Xiong, J.B., Pan, Z.Q., Zhou, C.F., 2018. Liquefaction of sewage sludge in ethanol-water mixed solvents for bio-oil and biochar products. Energy 148, 629–641.
|
|
Laredo, G.C., Reza, J., Meneses Ruiz, E., 2023. Hydrothermal liquefaction processes for plastics recycling: a review. Clean. Chem. Eng. 5, 100094.
|
|
Lee, C.S., Conradie, A.V., Lester, E., 2021. Review of supercritical water gasification with lignocellulosic real biomass as the feedstocks: process parameters, biomass composition, catalyst development, reactor design and its challenges. Chem. Eng. J. 415, 128837.
|
|
Lee, M.J., Wu, H.T., Lin, H.M., 2000. Kinetics of catalytic esterification of acetic acid and amyl alcohol over dowex. Ind. Eng. Chem. Res. 39, 4094–4099.
|
|
Leng, L.J., Leng, S.Q., Chen, J., Yuan, X.Z., Li, J., Li, K., Wang, Y.P., Zhou, W.G., 2018b. The migration and transformation behavior of heavy metals during co-liquefaction of municipal sewage sludge and lignocellulosic biomass. Bioresour. Technol. 259, 156–163.
|
|
Leng, L.J., Li, J., Yuan, X.Z., Li, J.J., Han, P., Hong, Y.C., Wei, F., Zhou, W.G., 2018a. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresour. Technol. 251, 49–56.
|
|
Leng, L.J., Yuan, X.Z., Chen, X.H., Huang, H.J., Wang, H., Li, H., Zhu, R., Li, S.X., Zeng, G.M., 2015. Characterization of liquefaction bio-oil from sewage sludge and its solubilization in diesel microemulsion. Energy 82, 218–228.
|
|
Leng, L.J., Yuan, X.Z., Huang, H.J., Jiang, H.W., Chen, X.H., Zeng, G.M., 2014. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 167, 144–150.
|
|
Leng, L.J., Yuan, X.Z., Shao, J.G., Huang, H.J., Wang, H., Li, H., Chen, X.H., Zeng, G.M., 2016. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresour. Technol. 200, 320–327.
|
|
Leng, L.J., Zhang, W.J., Peng, H.Y., Li, H.L., Jiang, S.J., Huang, H.J., 2020. Nitrogen in bio-oil produced from hydrothermal liquefaction of biomass: a review. Chem. Eng. J. 401, 126030.
|
|
Li, B.S., Song, H.M., Yang, T.H., Liu, E.H., Li, R.D., 2023. Hydrothermal liquefaction of sewage sludge and model compound: heavy metals distribution and behaviors. J. Anal. Appl. Pyrolysis 169, 105800.
|
|
Li, N.X., Wei, L.F., Bibi, R., Chen, L.Y., Liu, J.H., Zhang, L., Zheng, Y.Q., Zhou, J.C., 2016. Catalytic hydrogenation of alkali lignin into bio-oil using flower-like hierarchical MoS2-based composite catalysts. Fuel 185, 532–540.
|
|
Li, R.D., Ma, Z.M., Yang, T.H., Li, B.S., Wei, L.H., Sun, Y., 2018. Sub–supercritical liquefaction of municipal wet sewage sludge to produce bio-oil: effect of different organic–water mixed solvents. J. Supercrit. Fluids 138, 115–123.
|
|
Li, R.D., Teng, W.C., Li, Y.L., Liu, E.H., 2019. Liquefaction of sewage sludge to produce bio-oil in different organic solvents with in situ hydrogenation. Energy Fuels 33, 7415–7423. doi: 10.1021/acs.energyfuels.9b01434
|
|
Li, W.P., Zhao, Y.Y., Yao, C.L., Lu, J.W., Li, R., Wu, Y.L., 2020. Migration and transformation of nitrogen during hydrothermal liquefaction of penicillin sludge. J. Supercrit. Fluids 157, 104714.
|
|
Li, Y.L., Leow, S., Fedders, A.C., Sharma, B.K., Guest, J.S., Strathmann, T.J., 2017. Quantitative multiphase model for hydrothermal liquefaction of algal biomass. Green Chem 19, 1163–1174.
|
|
Liu, H.M., Li, M.F., Sun, R.C., 2013. Hydrothermal liquefaction of cornstalk: 7-lump distribution and characterization of products. Bioresour. Technol. 128, 58–64.
|
|
Liu, H., Basar, I.A., Lyczko, N., Nzihou, A., Eskicioglu, C., 2022a. Incorporating hydrothermal liquefaction into wastewater treatment-part Ⅰ: process optimization for energy recovery and evaluation of product distribution. Chem. Eng. J. 449, 137838.
|
|
Liu, H., Basar, I.A., Nzihou, A., Eskicioglu, C., 2021a. Hydrochar derived from municipal sludge through hydrothermal processing: a critical review on its formation, characterization, and valorization. Water Res 199, 117186.
|
|
Liu, H., Zhang, Q., Hu, H.Y., Liu, P., Hu, X.W., Li, A.J., Yao, H., 2015. Catalytic role of conditioner CaO in nitrogen transformation during sewage sludge pyrolysis. Proc. Combust. Inst. 35, 2759–2766.
|
|
Liu, Q., Xu, R.L., Yan, C.Q., Han, L.J., Lei, H.W., Ruan, R., Zhang, X.S., 2021b. Fast hydrothermal co-liquefaction of corn stover and cow manure for biocrude and hydrochar production. Bioresour. Technol. 340, 125630.
|
|
Liu, R.L., Tian, W.Y., Kong, S.Y., Meng, Y.H., Wang, H.S., Zhang, J.L., 2018. Effects of inorganic and organic acid pretreatments on the hydrothermal liquefaction of municipal secondary sludge. Energy Convers. Manag. 174, 661–667.
|
|
Liu, T.T., Guo, Y.C., Peng, N.N., Lang, Q.Q., Xia, Y., Gai, C., Liu, Z.G., 2017. Nitrogen transformation among char, tar and gas during pyrolysis of sewage sludge and corresponding hydrochar. J. Anal. Appl. Pyrolysis 126, 298–306. doi: 10.4271/2017-01-1578
|
|
Liu, X.Y., Zhu, F.F., Zhang, R.Y., Zhao, L.Y., Qi, J.J., 2021c. Recent progress on biodiesel production from municipal sewage sludge. Renew. Sustain. Energy Rev. 135, 110260.
|
|
Liu, Y.X., Chandra Akula, K., Phani Raj Dandamudi, K., Liu, Y.X., Xu, M., Sanchez, A., Zhu, D., Deng, S.G., 2022b. Effective depolymerization of polyethylene plastic wastes under hydrothermal and solvothermal liquefaction conditions. Chem. Eng. J. 446, 137238.
|
|
López Barreiro, D., Prins, W., Ronsse, F., Brilman, W., 2013. Hydrothermal liquefaction (HTL) of microalgae for biofuel production: state of the art review and future prospects. Biomass Bioenergy 53, 113–127.
|
|
Lozano, E.M., Petersen, S.B., Paulsen, M.M., Rosendahl, L.A., Pedersen, T.H., 2021. Techno-economic evaluation of carbon capture via physical absorption from HTL gas phase derived from woody biomass and sewage sludge. Energy Convers. Manag. X 11, 100089.
|
|
Lu, J.W., Fan, G.F., Yang, M.D., Wu, Y.L., 2022a. Origin of carbon in the bio-oil from hydrothermal liquefaction of protein and glucose via isotopic labeling. Fuel 308, 121941.
|
|
Lu, J., Li, X.Z., Yang, R.F., Zhao, J., Liu, Y.J., Qu, Y.B., 2014. Liquefaction of fermentation residue of reed- and corn stover-pretreated with liquid hot water in the presence of ethanol with aluminum chloride as the catalyst. Chem. Eng. J. 247, 142–151.
|
|
Lu, J.W., Liu, Z.D., Zhang, Y.H., Savage, P.E., 2018. Synergistic and antagonistic interactions during hydrothermal liquefaction of soybean oil, soy protein, cellulose, xylose, and lignin. ACS Sustainable Chem. Eng. 6, 14501–14509. doi: 10.1021/acssuschemeng.8b03156
|
|
Lu, J.W., Watson, J., Liu, Z.D., Wu, Y.L., 2022b. Elemental migration and transformation during hydrothermal liquefaction of biomass. J. Hazard. Mater. 423, 126961.
|
|
Lu, T.F., Jan, K., Chen, W.T., 2022c. Hydrothermal liquefaction of pretreated polyethylene-based ocean-bound plastic waste in supercritical water. J. Energy Inst. 105, 282–292.
|
|
Luo, L.G., Dai, L.Y., Savage, P.E., 2015. Catalytic hydrothermal liquefaction of soy protein concentrate. Energy Fuels 29, 3208–3214. doi: 10.1021/acs.energyfuels.5b00321
|
|
Luo, L.G., Sheehan, J.D., Dai, L.Y., Savage, P.E., 2016. Products and kinetics for isothermal hydrothermal liquefaction of soy protein concentrate. ACS Sustainable Chem. Eng. 4, 2725–2733. doi: 10.1021/acssuschemeng.6b00226
|
|
Ma, C.T., Geng, J.G., Zhang, D., Ning, X.F., 2020. Hydrothermal liquefaction of macroalgae: influence of zeolites based catalyst on products. J. Energy Inst. 93, 581–590.
|
|
Ma, D.C., Liang, L.W., Hu, E.F., Chen, H.Q., Wang, D.B., He, C., Feng, Q.G., 2021. Dechlorination of polyvinyl chloride by hydrothermal treatment with cupric ion. Process. Saf. Environ. Prot. 146, 108–117.
|
|
Madikizela, M., Isa, Y.M., 2023. Effect of operating conditions on the hydrothermal valorization of sewage sludge. Biofuels Bioprod. Biorefin. 17, 403–414. doi: 10.1002/bbb.2429
|
|
Madsen, R.B., Zhang, H.F., Biller, P., Goldstein, A.H., Glasius, M., 2017. Characterizing semivolatile organic compounds of biocrude from hydrothermal liquefaction of biomass. Energy Fuels 31, 4122–4134. doi: 10.1021/acs.energyfuels.7b00160
|
|
Mahesh, D., Ahmad, S., Kumar, R., Chakravarthy, S.R., Vinu, R., 2021. Hydrothermal liquefaction of municipal solid wastes for high quality bio-crude production using glycerol as co-solvent. Bioresour. Technol. 339, 125537.
|
|
Mahon, A.M., O'Connell, B., Healy, M.G., O'Connor, I., Officer, R., Nash, R., Morrison, L., 2017. Microplastics in sewage sludge: effects of treatment. Environ. Sci. Technol. 51, 810–818. doi: 10.1021/acs.est.6b04048
|
|
Malins, K., Kampars, V., Brinks, J., Neibolte, I., Murnieks, R., Kampare, R., 2015. Bio-oil from thermo-chemical hydro-liquefaction of wet sewage sludge. Bioresour. Technol. 187, 23–29.
|
|
Manara, P., Zabaniotou, A., 2012. Towards sewage sludge based biofuels via thermochemical conversion: a review. Renew. Sustain. Energy Rev. 16, 2566–2582.
|
|
Mane, P.V., Rego, R.M., Yap, P.L., Losic, D., Kurkuri, M.D., 2024. Unveiling cutting-edge advances in high surface area porous materials for the efficient removal of toxic metal ions from water. Prog. Mater. Sci. 146, 101314.
|
|
Marrone, P.A., Elliott, D.C., Billing, J.M., Hallen, R.T., Hart, T.R., Kadota, P., Moeller, J.C., Randel, M.A., Schmidt, A.J., 2018. Bench-scale evaluation of hydrothermal processing technology for conversion of wastewater solids to fuels. Water Environ. Res. 90, 329–342. doi: 10.2175/106143017x15131012152861
|
|
Matayeva, A., Biller, P., 2021. Hydrothermal liquefaction aqueous phase treatment and hydrogen production using electro-oxidation. Energy Convers. Manag. 244, 114462.
|
|
Mathanker, A., Das, S., Pudasainee, D., Khan, M., Kumar, A., Gupta, R., 2021. A review of hydrothermal liquefaction of biomass for biofuels production with a special focus on the effect of process parameters, co-solvents, and extraction solvents. Energies 14, 4916. doi: 10.3390/en14164916
|
|
Mathioudakis, V., Gerbens-Leenes, P.W., Van der Meer, T.H., Hoekstra, A.Y., 2017. The water footprint of second-generation bioenergy: a comparison of biomass feedstocks and conversion techniques. J. Clean. Prod. 148, 571–582.
|
|
Mehrez, K., Fryda, L., Visser, R., Kane, A., Leblanc, N., Djelal, H., 2024. Hydrothermal processes of contaminated biomass: fate of heavy metals and liquid effluent valorization. Biomass Convers. Biorefin. 1–16.
|
|
Mian, M.M., Alam, N., Ahommed, M.S., He, Z.B., Ni, Y.H., 2022. Emerging applications of sludge biochar-based catalysts for environmental remediation and energy storage: a review. J. Clean. Prod. 360, 132131.
|
|
Miao, C., Chakraborty, M., Chen, S.L., 2012. Impact of reaction conditions on the simultaneous production of polysaccharides and bio-oil from heterotrophically grown Chlorella sorokiniana by a unique sequential hydrothermal liquefaction process. Bioresour. Technol. 110, 617–627.
|
|
Minowa, T., Zhen, F., Ogi, T., 1998. Cellulose decomposition in hot-compressed water with alkali or nickel catalyst. J. Supercrit. Fluids 13, 253–259.
|
|
Mishra, S., Mohanty, K., 2020. Co-HTL of domestic sewage sludge and wastewater treatment derived microalgal biomass: an integrated biorefinery approach for sustainable biocrude production. Energy Convers. Manag. 204, 112312.
|
|
Miyata, Y., Yamazaki, Y., Hirano, Y., Kita, Y., 2018. Quantitative analysis of the aqueous fraction from the Fe-assisted hydrothermal liquefaction of oil palm empty fruit bunches. J. Anal. Appl. Pyrolysis 132, 72–81.
|
|
Mohan, D., Pittman, C.U.Jr, Steele, P.H., 2006. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20, 848–889. doi: 10.1021/ef0502397
|
|
Möller, M., Harnisch, F., Schröder, U., 2013. Hydrothermal liquefaction of cellulose in subcritical water: the role of crystallinity on the cellulose reactivity. RSC Adv 3, 11035–11044. doi: 10.1039/c3ra41582a
|
|
Möller, M., Schröder, U., 2013. Hydrothermal production of furfural from xylose and xylan as model compounds for hemicelluloses. RSC Adv 3, 22253–22260. doi: 10.1039/c3ra43108h
|
|
Moquin, P.H.L., Temelli, F., 2008. Kinetic modeling of hydrolysis of canola oil in supercritical media. J. Supercrit. Fluids 45, 94–101.
|
|
Mujahid, R., Riaz, A., Insyani, R., Kim, J., 2020. A centrifugation-first approach for recovering high-yield bio-oil with high calorific values in biomass liquefaction: a case study of sewage sludge. Fuel 262, 116628.
|
|
Mumtaz, H., Sobek, S., Werle, S., Sajdak, M., Muzyka, R., 2023. Hydrothermal treatment of plastic waste within a circular economy perspective. Sustain. Chem. Pharm. 32, 100991.
|
|
Munir, D., Amer, H., Aslam, R., Bououdina, M., Usman, M.R., 2020. Composite zeolite beta catalysts for catalytic hydrocracking of plastic waste to liquid fuels. Mater. Renew. Sustain. Energy 9, 9.
|
|
Musivand, S., Bracciale, M.P., Damizia, M., De Filippis, P., de Caprariis, B., 2023. Viable recycling of polystyrene via hydrothermal liquefaction and pyrolysis. Energies 16, 4917. doi: 10.3390/en16134917
|
|
Nagai, Y., Smith, R.L.Jr, Inomata, H., Arai, K., 2007. Direct observation of polyvinylchloride degradation in water at temperatures up to 500 ℃ and at pressures up to 700 MPa. J. Appl. Polym. Sci. 106, 1075–1086. doi: 10.1002/app.26790
|
|
Nagappan, S., Bhosale, R.R., Nguyen, D.D., Chi, N.T.L., Ponnusamy, V.K., Woong, C.S., Kumar, G., 2021. Catalytic hydrothermal liquefaction of biomass into bio-oils and other value-added products: a review. Fuel 285, 119053.
|
|
Nakao, S., Akita, K., Ozaki, A., Masumoto, K., Okuda, T., 2021. Circulation of fibrous microplastic (microfiber) in sewage and sewage sludge treatment processes. Sci. Total Environ. 795, 148873.
|
|
Nazari, L., Yuan, Z.S., Ray, M.B., Xu, C.B., 2017. Co-conversion of waste activated sludge and sawdust through hydrothermal liquefaction: optimization of reaction parameters using response surface methodology. Appl. Energy 203, 1–10.
|
|
Nazem, M.A., Tavakoli, O., 2017. Bio-oil production from refinery oily sludge using hydrothermal liquefaction technology. J. Supercrit. Fluids 127, 33–40.
|
|
Nguyen, M.K., Hadi, M., Lin, C., Nguyen, H.L., Thai, V.B., Hoang, H.G., Vo, D.N., Tran, H.T., 2022. Microplastics in sewage sludge: distribution, toxicity, identification methods, and engineered technologies. Chemosphere 308, 136455.
|
|
Nguyen, T.D.H., Maschietti, M., Åmand, L.E., Vamling, L., Olausson, L., Andersson, S.I., Theliander, H., 2014. The effect of temperature on the catalytic conversion of Kraft lignin using near-critical water. Bioresour. Technol. 170, 196–203.
|
|
Obeid, F., Van, T.C., Brown, R., Rainey, T., 2019. Nitrogen and sulphur in algal biocrude: a review of the HTL process, upgrading, engine performance and emissions. Energy Convers. Manag. 181, 105–119.
|
|
Obeid, F., Van, T.C., Guo, B.F., Surawski, N.C., Hornung, U., Brown, R.J., Ramirez, J.A., Thomas-Hall, S.R., Stephens, E., Hankamer, B., Rainey, T., 2021. The fate of nitrogen and sulphur during co-liquefaction of algae and bagasse: experimental and multi-criterion decision analysis. Biomass Bioenergy 151, 106119.
|
|
Obeid, R., Smith, N., Lewis, D.M., Hall, T., van Eyk, P., 2022. A kinetic model for the hydrothermal liquefaction of microalgae, sewage sludge and pine wood with product characterisation of renewable crude. Chem. Eng. J. 428, 131228.
|
|
OECD, 2022. Global Plastics Outlook. Available at
|
|
Oladejo, J., Shi, K.Q., Luo, X., Yang, G., Wu, T., 2019. A review of sludge-to-energy recovery methods. Energies 12, 60.
|
|
Onwudili, J.A., Williams, P.T., 2023. Catalytic and non-catalytic low-pressure hydrothermal liquefaction of pinewood sawdust, polyolefin plastics and their mixtures. J. Clean. Prod. 430, 139733.
|
|
Pan, Z.Q., Huang, H.J., Zhou, C.F., Lai, F.Y., He, X.W., Xiong, J.B., Xiao, X.F., 2019. Distribution and transformation behaviors of heavy metals during liquefaction process of sewage sludge in ethanol-water mixed solvents. J. Cent. South Univ. 26, 2771–2784. doi: 10.1007/s11771-019-4212-6
|
|
Peng, W., Wu, C., Wu, S., Wu, Y., Gao, J., 2014. The effects of reaction atmosphere on composition, oxygen distribution, and heating value of products from the hydrothermal liquefaction of corn stalk. Energy Sources Part A Recovery Util. Environ. Eff. 36, 347–356. doi: 10.1080/15567036.2010.540636
|
|
Peterson, A.A., Vogel, F., Lachance, R.P., Fröling, M., Antal, J., Tester, J.W., 2008. Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ. Sci. 1, 32–65. doi: 10.1039/b810100k
|
|
Poerschmann, J., Weiner, B., Woszidlo, S., Koehler, R., Kopinke, F.D., 2015. Hydrothermal carbonization of poly(vinyl chloride). Chemosphere 119, 682–689.
|
|
Ponnusamy, V.K., Nagappan, S., Bhosale, R.R., Lay, C.H., Duc Nguyen, D., Pugazhendhi, A., Chang, S.W., Kumar, G., 2020. Review on sustainable production of biochar through hydrothermal liquefaction: physico-chemical properties and applications. Bioresour. Technol. 310, 123414.
|
|
Posmanik, R., Martinez, C.M., Cantero-Tubilla, B., Cantero, D.A., Sills, D.L., Cocero, M.J., Tester, J.W., 2018. Acid and alkali catalyzed hydrothermal liquefaction of dairy manure digestate and food waste. ACS Sustainable Chem. Eng. 6, 2724–2732. doi: 10.1021/acssuschemeng.7b04359
|
|
Prado, G.H.C., Rao, Y., de Klerk, A., 2017. Nitrogen removal from oil: a review. Energy Fuels 31, 14–36. doi: 10.1021/acs.energyfuels.6b02779
|
|
Prajitno, H., Park, J., Ryu, C., Park, H.Y., Lim, H.S., Kim, J., 2018. Effects of solvent participation and controlled product separation on biomass liquefaction: a case study of sewage sludge. Appl. Energy 218, 402–416.
|
|
Prajitno, H., Zeb, H., Park, J., Ryu, C., Kim, J., 2017. Efficient renewable fuel production from sewage sludge using a supercritical fluid route. Fuel 200, 146–152.
|
|
Prestigiacomo, C., Proietto, F., Laudicina, V.A., Siragusa, A., Scialdone, O., Galia, A., 2021. Catalytic hydrothermal liquefaction of municipal sludge assisted by formic acid for the production of next-generation fuels. Energy 232, 121086.
|
|
Prestigiacomo, C., Zimmermann, J., Hornung, U., Raffelt, K., Dahmen, N., Scialdone, O., Galia, A., 2022. Effect of transition metals and homogeneous hydrogen producers in the hydrothermal liquefaction of sewage sludge. Fuel Process. Technol. 237, 107452.
|
|
Przydatek, G., Wota, A.K., 2020. Analysis of the comprehensive management of sewage sludge in Poland. J. Mater. Cycles Waste Manag. 22, 80–88. doi: 10.1007/s10163-019-00937-y
|
|
Qi, Y.Y., He, J.H., Xiu, F.R., Nie, W.J., Chen, M.J., 2018. Partial oxidation treatment of waste polyvinyl chloride in critical water: preparation of benzaldehyde/acetophenone and dechlorination. J. Clean. Prod. 196, 331–339.
|
|
Qian, L.L., Wang, S.Z., Savage, P.E., 2017. Hydrothermal liquefaction of sewage sludge under isothermal and fast conditions. Bioresour. Technol. 232, 27–34.
|
|
Qian, L.L., Wang, S.Z., Savage, P.E., 2020. Fast and isothermal hydrothermal liquefaction of sludge at different severities: reaction products, pathways, and kinetics. Appl. Energy 260, 114312.
|
|
Rahman, Q.M., Zhang, B., Wang, L.J., Shahbazi, A., 2019. A combined pretreatment, fermentation and ethanol-assisted liquefaction process for production of biofuel from Chlorella sp. Fuel 257, 116026.
|
|
Rahman, T., Jahromi, H., Roy, P., Adhikari, S., Hassani, E., Oh, T.S., 2021. Hydrothermal liquefaction of municipal sewage sludge: effect of red mud catalyst in ethylene and inert ambiences. Energy Convers. Manag. 245, 114615.
|
|
Rahman, T., Jahromi, H., Roy, P., Bhattarai, A., Ammar, M., Baltrusaitis, J., Adhikari, S., 2023. Depolymerization of household plastic waste via catalytic hydrothermal liquefaction. Energy Fuels 37, 13202–13217. doi: 10.1021/acs.energyfuels.3c01706
|
|
Raikova, S., Knowles, T.D.J., Allen, M.J., Chuck, C.J., 2019. Co-liquefaction of macroalgae with common marine plastic pollutants. ACS Sustainable Chem. Eng. 7, 6769–6781. doi: 10.1021/acssuschemeng.8b06031
|
|
Ramirez, J., Brown, R., Rainey, T., 2015. A review of hydrothermal liquefaction bio-crude properties and prospects for upgrading to transportation fuels. Energies 8, 6765–6794. doi: 10.3390/en8076765
|
|
Ranganathan, P., 2023. Techno-economic analysis of renewable fuels production from sewage sludge through hydrothermal liquefaction. Sustain. Energy Technol. Assess. 57, 103164.
|
|
Ranganathan, P., Savithri, S., 2019. Techno-economic analysis of microalgae-based liquid fuels production from wastewater via hydrothermal liquefaction and hydroprocessing. Bioresour. Technol. 284, 256–265.
|
|
Robin, T., Jones, J.M., Ross, A.B., 2017. Catalytic hydrothermal processing of lipids using metal doped zeolites. Biomass Bioenergy 98, 26–36.
|
|
Rodriguez Correa, C., Kruse, A., 2018. Biobased functional carbon materials: production, characterization, and applications: a review. Materials (Basel) 11, 1568.
|
|
Rogalinski, T., Liu, K.Y., Albrecht, T., Brunner, G., 2008. Hydrolysis kinetics of biopolymers in subcritical water. J. Supercrit. Fluids 46, 335–341.
|
|
Rulkens, W., 2008. Sewage sludge as a biomass resource for the production of energy: overview and assessment of the various options. Energy Fuels 22, 9–15. doi: 10.1021/ef700267m
|
|
Saengsuriwong, R., Onsree, T., Phromphithak, S., Tippayawong, N., 2021. Biocrude oil production via hydrothermal liquefaction of food waste in a simplified high-throughput reactor. Bioresour. Technol. 341, 125750.
|
|
Sangon, S., Ratanavaraha, S., Ngamprasertsith, S., Prasassarakich, P., 2006. Coal liquefaction using supercritical toluene-tetralin mixture in a semi-continuous reactor. Fuel Process. Technol. 87, 201–207.
|
|
Sato, N., Quitain, A.T., Kang, K., Daimon, H., Fujie, K., 2004. Reaction kinetics of amino acid decomposition in high-temperature and high-pressure water. Ind. Eng. Chem. Res. 43, 3217–3222.
|
|
Sato, O., Arai, K., Shirai, M., 2006. Hydrolysis of poly(ethylene terephthalate) and poly(ethylene 2, 6-naphthalene dicarboxylate) using water at high temperature: effect of proton on low ethylene glycol yield. Catal. Today 111, 297–301.
|
|
Savage, P.E., 2000. Mechanisms and kinetics models for hydrocarbon pyrolysis. J. Anal. Appl. Pyrolysis 54, 109–126.
|
|
Sayegh, A., Prakash, N.S., Pedersen, T.H., Horn, H., Saravia, F., 2021. Treatment of hydrothermal liquefaction wastewater with ultrafiltration and air stripping for oil and particle removal and ammonia recovery. J. Water Process. Eng. 44, 102427.
|
|
Seshasayee, M.S., Savage, P.E., 2020. Oil from plastic via hydrothermal liquefaction: production and characterization. Appl. Energy 278, 115673.
|
|
Seshasayee, M.S., Savage, P.E., 2021. Synergistic interactions during hydrothermal liquefaction of plastics and biomolecules. Chem. Eng. J. 417, 129268.
|
|
Shafizadeh, A., Shahbeig, H., Nadian, M.H., Mobli, H., Dowlati, M., Gupta, V.K., Peng, W.X., Lam, S.S., Tabatabaei, M., Aghbashlo, M., 2022. Machine learning predicts and optimizes hydrothermal liquefaction of biomass. Chem. Eng. J. 445, 136579.
|
|
Shah, A.A., Toor, S.S., Conti, F., Nielsen, A.H., Rosendahl, L.A., 2020a. Hydrothermal liquefaction of high ash containing sewage sludge at sub and supercritical conditions. Biomass Bioenergy 135, 105504.
|
|
Shah, A.A., Toor, S.S., Nielsen, A.H., Pedersen, T.H., Rosendahl, L.A., 2021a. Bio-crude production through recycling of pretreated aqueous phase via activated carbon. Energies 14, 3488. doi: 10.3390/en14123488
|
|
Shah, A.A., Toor, S.S., Seehar, T.H., Nielsen, R.S., Nielsen, A.H., Pedersen, T.H., Rosendahl, L.A., 2020b. Bio-crude production through aqueous phase recycling of hydrothermal liquefaction of sewage sludge. Energies 13, 493. doi: 10.3390/en13020493
|
|
Shah, A.A., Toor, S.S., Seehar, T.H., Sadetmahaleh, K.K., Pedersen, T.H., Nielsen, A.H., Rosendahl, L.A., 2021b. Bio-crude production through co-hydrothermal processing of swine manure with sewage sludge to enhance pumpability. Fuel 288, 119407.
|
|
Shahbeik, H., Kazemi Shariat Panahi, H., Dehhaghi, M., Guillemin, G.J., Fallahi, A., Hosseinzadeh-Bandbafha, H., Amiri, H., Rehan, M., Raikwar, D., Latine, H., Pandalone, B., Khoshnevisan, B., Sonne, C., Vaccaro, L., Nizami, A.S., Gupta, V.K., Lam, S.S., Pan, J.T., Luque, R., Sels, B., Peng, W.X., Tabatabaei, M., Aghbashlo, M., 2024a. Biomass to biofuels using hydrothermal liquefaction: a comprehensive review. Renew. Sustain. Energy Rev. 189, 113976.
|
|
Shahbeik, H., Kazemi Shariat Panahi, H., Dehhaghi, M., Guillemin, G.J., Fallahi, A., Hosseinzadeh-Bandbafha, H., Amiri, H., Rehan, M., Raikwar, D., Latine, H., Pandalone, B., Khoshnevisan, B., Sonne, C., Vaccaro, L., Nizami, A.S., Gupta, V.K., Lam, S.S., Pan, J.T., Luque, R., Sels, B., Peng, W.X., Tabatabaei, M., Aghbashlo, M., 2024b. Biomass to biofuels using hydrothermal liquefaction: a comprehensive review. Renew. Sustain. Energy Rev. 189, 113976.
|
|
Shakya, R., Whelen, J., Adhikari, S., Mahadevan, R., Neupane, S., 2015. Effect of temperature and Na2CO3 catalyst on hydrothermal liquefaction of algae. Algal Res 12, 80–90.
|
|
Sharma, I., Deshan, A.D.K., Pham, H.D., Padwal, C., Doherty, W.O.S., Dubal, D., 2022. Zero-waste: carbon and SiO2 composite materials from the solid residue of the hydrothermal liquefaction of anaerobic digestion digestate for Li-ion batteries. Sustain. Mater. Technol. 31, e00364.
|
|
Sharma, K., Rosendahl, L.A., Pedersen, T.H., 2025. Evaluating direct use fertilizer potential of hydrothermal liquefaction solid mineral products: integrating anaerobic digestion and hydrothermal liquefaction. Waste Manag 191, 203–211. doi: 10.2991/978-2-38476-477-8_15
|
|
Shi, W., Gao, Y.H., Yang, G.H., Zhao, Y.P., 2013. Conversion of cornstalk to bio-oil in hot-compressed water: effects of ultrasonic pretreatment on the yield and chemical composition of bio-oil, carbon balance, and energy recovery. J. Agric. Food Chem. 61, 7574–7582. doi: 10.1021/jf401975p
|
|
Silva Thomsen, L.B., Carvalho, P.N., Dos Passos, J.S., Anastasakis, K., Bester, K., Biller, P., 2020. Hydrothermal liquefaction of sewage sludge; energy considerations and fate of micropollutants during pilot scale processing. Water Res 183, 116101.
|
|
Silva Thomsen, L.B., Anastasakis, K., Biller, P., 2022. Wet oxidation of aqueous phase from hydrothermal liquefaction of sewage sludge. Water Res 209, 117863.
|
|
Sınaǧ, A., Kruse, A., Schwarzkopf, V., 2003. Key compounds of the hydropyrolysis of glucose in supercritical water in the presence of K2CO3. Ind. Eng. Chem. Res. 42, 3516–3521.
|
|
Singh, R., Balagurumurthy, B., Prakash, A., Bhaskar, T., 2015a. Catalytic hydrothermal liquefaction of water hyacinth. Bioresour. Technol. 178, 157–165. doi: 10.11646/phytotaxa.197.2.9
|
|
Singh, R., Chaudhary, K., Biswas, B., Balagurumurthy, B., Bhaskar, T., 2015b. Hydrothermal liquefaction of rice straw: effect of reaction environment. J. Supercrit. Fluids 104, 70–75.
|
|
Sivaranjanee, R., Kumar, P.S., Rangasamy, G., 2023. A recent advancement on hydrothermal carbonization of biomass to produce hydrochar for pollution control. Carbon Lett 33, 1909–1933. doi: 10.1007/s42823-023-00576-2
|
|
Song, H.M., Yang, T.H., Li, B.S., Tong, Y., Li, R.D., 2022. Hydrothermal liquefaction of sewage sludge into biocrude: effect of aqueous phase recycling on energy recovery and pollution mitigation. Water Res 226, 119278.
|
|
Su, L., Wu, X.H., Liu, X.R., Chen, L.Y., Chen, K.Y., Hong, S.M., 2007. Effect of increasing course of temperature and pressure on polypropylene degradation in supercritical water. Chin. J. Chem. Eng. 15, 738–741.
|
|
Su, Y., Liu, D.B., Gong, M., Zhu, W., Yu, Y.Q., Gu, H.Y., 2019. Investigation on the decomposition of chemical compositions during hydrothermal conversion of dewatered sewage sludge. Int. J. Hydrog. Energy 44, 26933–26942.
|
|
Sun, C.X., Li, W., Chen, Z., Qin, W.T., Wen, X.H., 2019b. Responses of antibiotics, antibiotic resistance genes, and mobile genetic elements in sewage sludge to thermal hydrolysis pre-treatment and various anaerobic digestion conditions. Environ. Int. 133, 105156.
|
|
Sun, J., Dai, X.H., Wang, Q.L., van Loosdrecht, M.C.M., Ni, B.J., 2019a. Microplastics in wastewater treatment plants: detection, occurrence and removal. Water Res 152, 21–37. doi: 10.1117/12.2532662
|
|
Sun, X.F., Sun, R.C., Fowler, P., Baird, M.S., 2005. Extraction and characterization of original lignin and hemicelluloses from wheat straw. J. Agric. Food Chem. 53, 860–870. doi: 10.1021/jf040456q
|
|
SundarRajan, P., Gopinath, K.P., Arun, J., GracePavithra, K., Pavendan, K., AdithyaJoseph, A., 2020. An insight into carbon balance of product streams from hydrothermal liquefaction of Scenedesmus abundans biomass. Renew. Energy 151, 79–87.
|
|
Syed-Hassan, S.S.A., Wang, Y., Hu, S., Su, S., Xiang, J., 2017. Thermochemical processing of sewage sludge to energy and fuel: fundamentals, challenges and considerations. Renew. Sustain. Energy Rev. 80, 888–913.
|
|
Tagaya, H., Katoh, K., Kadokawa, J.I., Chiba, K., 1999. Decomposition of polycarbonate in subcritical and supercritical water. Polym. Degrad. Stab. 64, 289–292.
|
|
Tai, L.Y., Hamidi, R., Paglia, L., de Filippis, P., Scarsella, M., de Caprariis, B., 2022. Lignin-enriched waste hydrothermal liquefaction with ZVMs and metal-supported Al2O3 catalyst. Biomass Bioenergy 165, 106594.
|
|
Takeshita, Y., Kato, K., Takahashi, K., Sato, Y., Nishi, S., 2004. Basic study on treatment of waste polyvinyl chloride plastics by hydrothermal decomposition in subcritical and supercritical regions. J. Supercrit. Fluids 31, 185–193.
|
|
Tan, H.T., Corbin, K.R., Fincher, G.B., 2016. Emerging technologies for the production of renewable liquid transport fuels from biomass sources enriched in plant cell walls. Front. Plant Sci. 7, 1854.
|
|
Teri, G.L., Luo, L.G., Savage, P.E., 2014. Hydrothermal treatment of protein, polysaccharide, and lipids alone and in mixtures. Energy Fuels 28, 7501–7509. doi: 10.1021/ef501760d
|
|
Tian, C.Y., Li, B.M., Liu, Z.D., Zhang, Y.H., Lu, H.F., 2014. Hydrothermal liquefaction for algal biorefinery: a critical review. Renew. Sustain. Energy Rev. 38, 933–950.
|
|
Tito, E., dos Passos, J.S., Rombolà, A.G., Torri, C., Bensaid, S., Pirone, R., Biller, P., 2024. Sequential hydrothermal dechlorination and liquefaction of PVC. Energy Convers. Manag. 304, 118228.
|
|
Tong, Y., Yang, T.H., Li, B.S., Song, H.M., Kai, X.P., Li, R.D., 2023. Transition metal load HZSM-5 catalyst assisted hydrothermal conversion of sewage sludge: nitrogen transformation mechanism and denitrification effectiveness of bio-oil. J. Energy Inst. 108, 101070.
|
|
Toor, S.S., Reddy, H., Deng, S.G., Hoffmann, J., Spangsmark, D., Madsen, L.B., Holm-Nielsen, J.B., Rosendahl, L.A., 2013. Hydrothermal liquefaction of Spirulina and Nannochloropsis salina under subcritical and supercritical water conditions. Bioresour. Technol. 131, 413–419.
|
|
Toor, S.S., Rosendahl, L., Rudolf, A., 2011. Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36, 2328–2342.
|
|
Tzanetis, K.F., Posada, J.A., Ramirez, A., 2017. Analysis of biomass hydrothermal liquefaction and biocrude-oil upgrading for renewable jet fuel production: the impact of reaction conditions on production costs and GHG emissions performance. Renew. Energy 113, 1388–1398.
|
|
Usman, M., Chen, H.H., Chen, K.F., Ren, S., Clark, J.H., Fan, J.J., Luo, G., Zhang, S.C., 2019. Characterization and utilization of aqueous products from hydrothermal conversion of biomass for bio-oil and hydro-char production: a review. Green Chem 21, 1553–1572. doi: 10.1039/c8gc03957g
|
|
Usman, M., Cheng, S., Boonyubol, S., Cross, J.S., 2024. Nitrogen minimization in hydrothermal liquefaction biocrude from sewage sludge with green extraction solvents. ACS Omega 9, 14530–14538. doi: 10.1021/acsomega.4c00455
|
|
Vaxelaire, J., Cézac, P., 2004. Moisture distribution in activated sludges: a review. Water Res 38, 2215–2230.
|
|
Venteris, E.R., Skaggs, R.L., Wigmosta, M.S., Coleman, A.M., 2014. A national-scale comparison of resource and nutrient demands for algae-based biofuel production by lipid extraction and hydrothermal liquefaction. Biomass Bioenergy 64, 276–290.
|
|
Villaver, W.S., Carpio, R.B., Yap, K.J., de Leon, R.L., 2018. Effects of temperature and reaction time on yield and properties of biocrude oil produced by hydrothermal liquefaction of Spirulina platensis. Int. J. Smart Grid Clean Energy 7, 32–41.
|
|
Vo, T.K., Kim, S.S., Ly, H.V., Lee, E.Y., Lee, C.G., Kim, J., 2017. A general reaction network and kinetic model of the hydrothermal liquefaction of microalgae Tetraselmis sp. Bioresour. Technol. 241, 610–619.
|
|
Wagner, J.L., Le, C.D., Ting, V.P., Chuck, C.J., 2017. Design and operation of an inexpensive, laboratory-scale, continuous hydrothermal liquefaction reactor for the conversion of microalgae produced during wastewater treatment. Fuel Process. Technol. 165, 102–111.
|
|
Wahyudiono, Sasaki M., Goto, M., 2008. Recovery of phenolic compounds through the decomposition of lignin in near and supercritical water. Chem. Eng. Process. Process. Intensif. 47, 1609–1619.
|
|
Wang, G., Li, W., Li, B.Q., Chen, H.K., 2007. Direct liquefaction of sawdust under syngas. Fuel 86, 1587–1593.
|
|
Wang, G., Zhang, J.Q., Yu, J., Zhu, Z., Guo, X.Y., Chen, G.Y., Pedersen, T., Rosendahl, L., Yu, X.F., Wang, H., 2022b. Catalytic hydrothermal liquefaction of sewage sludge over alumina-based and attapulgite-based heterogeneous catalysts. Fuel 323, 124329.
|
|
Wang, H.Y., Han, X., Zeng, Y.M., Xu, C.C., 2023. Development of a global kinetic model based on chemical compositions of lignocellulosic biomass for predicting product yields from hydrothermal liquefaction. Renew. Energy 215, 118956.
|
|
Wang, J.J., Peng, X.W., Chen, X.F., Ma, X.Q., 2019. Co-liquefaction of low-lipid microalgae and starch-rich biomass waste: the interaction effect on product distribution and composition. J. Anal. Appl. Pyrolysis 139, 250–257.
|
|
Wang, L.P., Li, A.M., Chang, Y.Z., 2017. Relationship between enhanced dewaterability and structural properties of hydrothermal sludge after hydrothermal treatment of excess sludge. Water Res 112, 72–82.
|
|
Wang, W.J., Du, H.B., Huang, Y.Y., Wang, S.B., Liu, C., Li, J., Zhang, J.L., Lu, S., Wang, H.S., Meng, H., 2022a. Enhanced biocrude production from hydrothermal conversion of municipal sewage sludge via co-liquefaction with various model feedstocks. RSC Adv 12, 20379–20386. doi: 10.1039/d2ra02325c
|
|
Wang, W.J., Yu, Q., Meng, H., Han, W., Li, J., Zhang, J.L., 2018. Catalytic liquefaction of municipal sewage sludge over transition metal catalysts in ethanol-water co-solvent. Bioresour. Technol. 249, 361–367.
|
|
Watanabe, M., Iida, T., Inomata, H., 2006. Decomposition of a long chain saturated fatty acid with some additives in hot compressed water. Energy Convers. Manag. 47, 3344–3350.
|
|
Watson, J., Zhang, Y.H., Si, B.C., Chen, W.T., de Souza, R., 2018. Gasification of biowaste: a critical review and outlooks. Renew. Sustain. Energy Rev. 83, 1–17. doi: 10.1117/1.jbo.23.9.090501
|
|
Wei, L.H., Wen, L.N., Yang, T.H., Zhang, N., 2015. Nitrogen transformation during sewage sludge pyrolysis. Energy Fuels 29, 5088–5094. doi: 10.1021/acs.energyfuels.5b00792
|
|
Wei, N., Xu, D.H., Hao, B.T., Guo, S.W., Guo, Y., Wang, S.Z., 2021. Chemical reactions of organic compounds in supercritical water gasification and oxidation. Water Res 190, 116634.
|
|
Wei, Y.Y., Fakudze, S., Yang, S.L., Zhang, Y., Xue, T.J., Han, J.G., Chen, J.Q., 2023. Synergistic citric acid-surfactant catalyzed hydrothermal liquefaction of pomelo peel for production of hydrocarbon-rich bio-oil. Sci. Total Environ. 857, 159235.
|
|
Wei, Y., Xu, D.H., Xu, M.X., Zheng, P.Y., Fan, L.L., Leng, L.J., Kapusta, K., 2024. Hydrothermal liquefaction of municipal sludge and its products applications. Sci. Total Environ. 908, 168177.
|
|
Williams, C.L., Westover, T.L., Emerson, R.M., Tumuluru, J.S., Li, C.L., 2016. Sources of biomass feedstock variability and the potential impact on biofuels production. BioEnergy Res 9, 1–14. doi: 10.1007/s12155-015-9694-y
|
|
Wörner, M., Werner, L., Hornung, U., Islongo Canabarro, N., Baudouin, D., Dahmen, N., 2024. The impact of sulfur-containing inorganic compounds during the depolymerization of lignin by hydrothermal liquefaction of black liquor. Energy Fuels 38, 6036–6047. doi: 10.1021/acs.energyfuels.3c04737
|
|
Wu, B.R., Berg, S.M., Remucal, C.K., Strathmann, T.J., 2020. Evolution of N-containing compounds during hydrothermal liquefaction of sewage sludge. ACS Sustainable Chem. Eng. 8, 18303–18313. doi: 10.1021/acssuschemeng.0c07060
|
|
Xiao, X.F., Chang, Y.C., Lai, F.Y., Fang, H.S., Zhou, C.F., Pan, Z.Q., Wang, J.X., Wang, Y.J., Yin, X., Huang, H.J., 2020. Effects of rice straw/wood sawdust addition on the transport/conversion behaviors of heavy metals during the liquefaction of sewage sludge. J. Environ. Manag. 270, 110824.
|
|
Xin, C.H., Addy, M.M., Zhao, J.Y., Cheng, Y.L., Ma, Y.W., Liu, S.Y., Mu, D.Y., Liu, Y.H., Chen, P., Ruan, R., 2018. Waste-to-biofuel integrated system and its comprehensive techno-economic assessment in wastewater treatment plants. Bioresour. Technol. 250, 523–531.
|
|
Xing, J., Xu, G.R., Li, G.B., 2021. Comparison of pyrolysis process, various fractions and potential soil applications between sewage sludge-based biochars and lignocellulose-based biochars. Ecotoxicol. Environ. Saf. 208, 111756.
|
|
Xing, T.Y., Alvarez-Majmutov, A., Gieleciak, R., Chen, J.W., 2019. Co-hydroprocessing HTL biocrude from waste biomass with bitumen-derived vacuum gas oil. Energy Fuels 33, 11135–11144. doi: 10.1021/acs.energyfuels.9b02711
|
|
Xu, C.B., Etcheverry, T., 2008. Hydro-liquefaction of woody biomass in sub- and super-critical ethanol with iron-based catalysts. Fuel 87, 335–345.
|
|
Xu, C.B., Lancaster, J., 2008. Conversion of secondary pulp/paper sludge powder to liquid oil products for energy recovery by direct liquefaction in hot-compressed water. Water Res 42, 1571–1582.
|
|
Xu, D.H., Lin, G.K., Liu, L., Wang, Y., Jing, Z.F., Wang, S.Z., 2018a. Comprehensive evaluation on product characteristics of fast hydrothermal liquefaction of sewage sludge at different temperatures. Energy 159, 686–695.
|
|
Xu, D.H., Wang, Y., Lin, G.K., Guo, S.W., Wang, S.Z., Wu, Z.Q., 2019. Co-hydrothermal liquefaction of microalgae and sewage sludge in subcritical water: ash effects on bio-oil production. Renew. Energy 138, 1143–1151.
|
|
Xu, Y.H., Li, M.F., 2021. Hydrothermal liquefaction of lignocellulose for value-added products: mechanism, parameter and production application. Bioresour. Technol. 342, 126035.
|
|
Xu, Y.P., Duan, P.G., Wang, F., 2015. Hydrothermal processing of macroalgae for producing crude bio-oil. Fuel Process. Technol. 130, 268–274.
|
|
Xu, Y., Liu, R., Yang, D.H., Dai, X.H., 2021. Sludge treatment and resource recovery towards carbon neutrality in China: current status and future perspective. Blue Green Syst 3, 119–127. doi: 10.2166/bgs.2021.115
|
|
Xu, Z.X., Xu, L., Cheng, J.H., He, Z.X., Wang, Q., Hu, X., 2018b. Investigation of pathways for transformation of N-heterocycle compounds during sewage sludge pyrolysis process. Fuel Process. Technol. 182, 37–44.
|
|
Xu, Z.J., Bai, X., Ye, Z.F., 2021. Removal and generation of microplastics in wastewater treatment plants: a review. J. Clean. Prod. 291, 125982.
|
|
Xue, Y., Chen, H.Y., Zhao, W.N., Yang, C., Ma, P., Han, S., 2016. A review on the operating conditions of producing bio-oil from hydrothermal liquefaction of biomass. Int. J. Energy Res. 40, 865–877. doi: 10.1002/er.3473
|
|
Yan, H.L., Zong, Z.M., Zhu, W.W., Li, Z.K., Wang, Y.G., Wei, Z.H., Li, Y., Wei, X.Y., 2015. Poplar liquefaction in water/methanol cosolvents. Energy Fuels 29, 3104–3110. doi: 10.1021/ef502518n
|
|
Yan, W.W., Xu, H., Lu, D., Zhou, Y., 2022. Effects of sludge thermal hydrolysis pretreatment on anaerobic digestion and downstream processes: mechanism, challenges and solutions. Bioresour. Technol. 344, 126248.
|
|
Yang, C., Wang, S.Z., Yang, J.Q., Xu, D.H., Li, Y.H., Li, J.N., Zhang, Y.S., 2020. Hydrothermal liquefaction and gasification of biomass and model compounds: a review. Green Chem 22, 8210–8232. doi: 10.1039/d0gc02802a
|
|
Yang, G., Zhang, G.M., Wang, H.C., 2015. Current state of sludge production, management, treatment and disposal in China. Water Res 78, 60–73.
|
|
Yang, J., He, Q., Yang, L.X., 2019a. A review on hydrothermal co-liquefaction of biomass. Appl. Energy 250, 926–945.
|
|
Yang, J., Hong, C., Li, Z.X., Xing, Y., Zhao, X.M., 2021. Study on hydrothermal liquefaction of antibiotic residues for bio-oil in ethanol-water system. Waste Manag 120, 164–174.
|
|
Yang, J., He, Q., Niu, H.B., Corscadden, K., Astatkie, T., 2018. Hydrothermal liquefaction of biomass model components for product yield prediction and reaction pathways exploration. Appl. Energy 228, 1618–1628.
|
|
Yang, T.H., Liu, X.S., Li, R.D., Li, B.S., Kai, X.P., 2019b. Hydrothermal liquefaction of sewage sludge to produce bio-oil: effect of co-pretreatment with subcritical water and mixed surfactants. J. Supercrit. Fluids 144, 28–38.
|
|
Yildirir, E., 2015. Chemical Recycling of Waste Plastics Via Hydrothermal Processing. University of Leeds, Leeds.
|
|
Yin, S.D., Dolan, R., Harris, M., Tan, Z.C., 2010. Subcritical hydrothermal liquefaction of cattle manure to bio-oil: effects of conversion parameters on bio-oil yield and characterization of bio-oil. Bioresour. Technol. 101, 3657–3664.
|
|
Yin, S.D., Tan, Z.C., 2012. Hydrothermal liquefaction of cellulose to bio-oil under acidic, neutral and alkaline conditions. Appl. Energy 92, 234–239.
|
|
Yokoyama, S.Y., Suzuki, A., Murakami, M., Ogi, T., Koguchi, K., Nakamura, E., 1987. Liquid fuel production from sewage sludge by catalytic conversion using sodium carbonate. Fuel 66, 1150–1155.
|
|
Yoshida, H., Terashima, M., Takahashi, Y., 1999. Production of organic acids and amino acids from fish meat by sub-critical water hydrolysis. Biotechnol. Prog. 15, 1090–1094.
|
|
Yu, J., Nickerson, A., Li, Y.L., Fang, Y.D., Strathmann, T.J., 2020. Fate of per- and polyfluoroalkyl substances (PFAS) during hydrothermal liquefaction of municipal wastewater treatment sludge. Environ. Sci.: Water Res. Technol. 6, 1388–1399. doi: 10.1039/c9ew01139k
|
|
Yu, J., Lin, X.Y., Huang, J.C., Ye, W.F., Lan, Q., Du, S.R., Liu, Z.L., Wu, Y.J., Zhao, Z.Y., Xu, X., Yang, G.F., Changotra, R., Hu, Y.L., Wu, Y.L., Yan, C.Y., Yang, J., He, Q., 2023. Recent advances in the production processes of hydrothermal liquefaction biocrude and aid-in investigation techniques. Renew. Energy 218, 119348.
|
|
Yuan, X.Z., Huang, H.J., Zeng, G.M., Li, H., Wang, J.Y., Zhou, C.F., Zhu, H.N., Pei, X.K., Liu, Z.F., Liu, Z.T., 2011. Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge. Bioresour. Technol. 102, 4104–4110.
|
|
Yuan, X.Z., Leng, L.J., Huang, H.J., Chen, X.H., Wang, H., Xiao, Z.H., Zhai, Y.B., Chen, H.M., Zeng, G.M., 2015. Speciation and environmental risk assessment of heavy metal in bio-oil from liquefaction/pyrolysis of sewage sludge. Chemosphere 120, 645–652.
|
|
Zanon Costa C., Falabella Sousa-Aguiar E., Peixoto Gimenes Couto M.A., Souza de Carvalho Filho J.F., 2020. Hydrothermal treatment of vegetable oils and fats aiming at yielding hydrocarbons: a review. Catalysts 10, 843.
|
|
Zhai, Y.B., Chen, H.M., Xu, B.B., Xiang, B.B., Chen, Z., Li, C.T., Zeng, G.M., 2014. Influence of sewage sludge-based activated carbon and temperature on the liquefaction of sewage sludge: yield and composition of bio-oil, immobilization and risk assessment of heavy metals. Bioresour. Technol. 159, 72–79.
|
|
Zhai, Y.B., Chen, Z., Chen, H.M., Xu, B.B., Li, P., Qing, R.P., Li, C.T., Zeng, G.M., 2015. Co-liquefaction of sewage sludge and oil-tea-cake in supercritical methanol: yield of bio-oil, immobilization and risk assessment of heavy metals. Environ. Technol. 36, 2770–2777. doi: 10.1080/09593330.2015.1049210
|
|
Zhang, B., von Keitz, M., Valentas, K., 2008. Thermal effects on hydrothermal biomass liquefaction. In: Adney, W.S., McMillan, J.D., Mielenz, J., Klasson, K.T. (Eds.). Biotechnology For Fuels and Chemicals. Totowa: Humana Press, 511–518.
|
|
Zhang, B., von Keitz, M., Valentas, K., 2009. Thermochemical liquefaction of high-diversity grassland perennials. J. Anal. Appl. Pyrolysis 84, 18–24.
|
|
Zhang, C., Tang, X.H., Sheng, L.L., Yang, X.Y., 2016. Enhancing the performance of co-hydrothermal liquefaction for mixed algae strains by the Maillard reaction. Green Chem 18, 2542–2553.
|
|
Zhang, C.Y., Zheng, C.P., Ma, X.Q., Zhou, Y., Wu, J.N., 2021. Co-hydrothermal carbonization of sewage sludge and banana stalk: fuel properties of hydrochar and environmental risks of heavy metals. J. Environ. Chem. Eng. 9, 106051.
|
|
Zhang, H.Y., Krafft, T., Gao, D., Zheng, G.D., Cai, L., 2018. Lignocellulose biodegradation in the biodrying process of sewage sludge and sawdust. Drying Technol 36, 316–324. doi: 10.1080/07373937.2017.1326502
|
|
Zhang, L.H., Champagne, P., Chunbao, X., 2011. Bio-crude production from secondary pulp/paper-mill sludge and waste newspaper via co-liquefaction in hot-compressed water. Energy 36, 2142–2150.
|
|
Zhang, S., Guo, X.Y., Zhu, Z., Sun, Z.Q., Yang, J.J., Zhao, J.Y., Shen, L., Rosendahl, L., Chen, G.Y., 2023. Influence of sodium hypochlorite/ultrasonic pretreatment on sewage sludge and subsequent hydrothermal liquefaction: study on reaction mechanism and properties of bio-oil. Biomass Bioenergy 175, 106872.
|
|
Zhang, W.L., Liang, Y.N., 2022. Hydrothermal liquefaction of sewage sludge–effect of four reagents on relevant parameters related to biocrude and PFAS. J. Environ. Chem. Eng. 10, 107092.
|
|
Zhang, X., Li, X.X., Li, R., Wu, Y.L., 2020. Hydrothermal carbonization and liquefaction of sludge for harmless and resource purposes: a review. Energy Fuels 34, 13268–13290. doi: 10.1021/acs.energyfuels.0c02467
|
|
Zhang, X., Zhan, L.L., Lin, M., Zeng, Y.Z., Li, R., Wu, Y.L., 2022. Production of acid-free bio-oil through improved co-HTL of sludge and microalgae: experiment and life cycle assessment. J. Clean. Prod. 379, 134668.
|
|
Zhang, Y.H., 2010. Hydrothermal liquefaction to convert biomass into crude oil. In: Blaschek, H.P., Ezeji, T.C., Scheffran, J. (Eds.). Biofuels from Agricultural Wastes and Byproducts, 201–232.
|
|
Zhao, P.T., Li, Z.Z., Li, T., Yan, W.J., Ge, S.F., 2017. The study of nickel effect on the hydrothermal dechlorination of PVC. J. Clean. Prod. 152, 38–46.
|
|
Zhao, P.T., Yuan, Z.L., Zhang, J., Song, X.P., Wang, C.P., Guo, Q.J., Ragauskas, A.J., 2021. Supercritical water co-liquefaction of LLDPE and PP into oil: properties and synergy. Sustainable Energy Fuels 5, 575–583. doi: 10.1039/d0se01486a
|
|
Zhao, X.Y., Xia, Y.H., Zhan, L., Xie, B., Gao, B., Wang, J.L., 2019. Hydrothermal treatment of E-waste plastics for tertiary recycling: product slate and decomposition mechanisms. ACS Sustainable Chem. Eng. 7, 1464–1473. doi: 10.1021/acssuschemeng.8b05147
|
|
Zheng, Q.X., Li, Z.X., Watanabe, M., 2022. Production of solid fuels by hydrothermal treatment of wastes of biomass, plastic, and biomass/plastic mixtures: a review. J. Bioresour. Bioprod. 7, 221–244.
|
|
Zhou, K.X., Barjenbruch, M., Kabbe, C., Inial, G., Remy, C., 2017. Phosphorus recovery from municipal and fertilizer wastewater: china's potential and perspective. J. Environ. Sci. 52, 151–159.
|
|
Zhou, Y., Schideman, L., Zheng, M.X., Martin-Ryals, A., Li, P., Tommaso, G., Zhang, Y.H., 2015. Anaerobic digestion of post-hydrothermal liquefaction wastewater for improved energy efficiency of hydrothermal bioenergy processes. Water Sci. Technol. 72, 2139–2147. doi: 10.2166/wst.2015.435
|
|
Zhou, Y., Zhang, Z.Q., Zhang, J., Xia, S.Q., 2016. Understanding key constituents and feature of the biopolymer in activated sludge responsible for binding heavy metals. Chem. Eng. J. 304, 527–532.
|
|
Zhu, F.F., Zhao, L.Y., Jiang, H.M., Zhang, Z.L., Xiong, Y.Q., Qi, J.J., Wang, J.W., 2014. Comparison of the lipid content and biodiesel production from municipal sludge using three extraction methods. Energy Fuels 28, 5277–5283. doi: 10.1021/ef500730c
|
|
Zhu, Y.H., Albrecht, K.O., Elliott, D.C., Hallen, R.T., Jones, S.B., 2013. Development of hydrothermal liquefaction and upgrading technologies for lipid-extracted algae conversion to liquid fuels. Algal Res 2, 455–464.
|
|
Zhu, Y.F., Zhao, Y.Z., Tian, S.P., Zhang, X., Wei, X.L., 2022. Catalytic hydrothermal liquefaction of sewage sludge: effect of metal support heterogeneous catalysts on products distribution. J. Energy Inst. 103, 154–159.
|
|
Zhu, Z., Rosendahl, L., Toor, S.S., Yu, D.H., Chen, G.Y., 2015. Hydrothermal liquefaction of barley straw to bio-crude oil: effects of reaction temperature and aqueous phase recirculation. Appl. Energy 137, 183–192.
|
|
Zhuang, X.Z., Huang, Y.Q., Song, Y.P., Zhan, H., Yin, X.L., Wu, C.Z., 2017. The transformation pathways of nitrogen in sewage sludge during hydrothermal treatment. Bioresour. Technol. 245, 463–470.
|
|
Zhuang, X.Z., Liu, J.G., Wang, C.G., Zhang, Q., Ma, L.L., 2022. A review on the stepwise processes of hydrothermal liquefaction (HTL): recovery of nitrogen sources and upgrading of biocrude. Fuel 313, 122671.
|
|
Zhuang, X.Z., Zhan, H., Song, Y.P., Huang, Y.Q., Yin, X.L., Wu, C.Z., 2019. Reutilization potential of antibiotic wastes via hydrothermal liquefaction (HTL): bio-oil and aqueous phase characteristics. J. Energy Inst. 92, 1537–1547.
|
|
Ziani, K., Ioniță-Mîndrican, C.B., Mititelu, M., Neacșu, S.M., Negrei, C., Moroșan, E., Drăgănescu, D., Preda, O.T., 2023. Microplastics: a real global threat for environment and food safety: a state of the art review. Nutrients 15, 617. doi: 10.3390/nu15030617
|
|
Zimmermann, J., Raffelt, K., Dahmen, N., 2021. Sequential hydrothermal processing of sewage sludge to produce low nitrogen biocrude. Processes 9, 491. doi: 10.3390/pr9030491
|