Volume 10 Issue 2
May  2025
Turn off MathJax
Article Contents
Dafang Huang, Jie Li, Suiyi Li, Jianbing Hu, Zhiru Cao, Yang Guo, Yu Ding, Mingwei Zhu, Yanfeng Chen. Self-densified super-strong wood[J]. Journal of Bioresources and Bioproducts, 2025, 10(2): 199-208. doi: 10.1016/j.jobab.2025.03.001
Citation: Dafang Huang, Jie Li, Suiyi Li, Jianbing Hu, Zhiru Cao, Yang Guo, Yu Ding, Mingwei Zhu, Yanfeng Chen. Self-densified super-strong wood[J]. Journal of Bioresources and Bioproducts, 2025, 10(2): 199-208. doi: 10.1016/j.jobab.2025.03.001

Self-densified super-strong wood

doi: 10.1016/j.jobab.2025.03.001
More Information
  • Corresponding author: E-mail address: mwzhu@nju.edu.cn (M. Zhu); E-mail address: yfchen@nju.edu.cn (Y. Chen)
  • Available Online: 2025-03-12
  • Publish Date: 2025-05-01
  • Lightweight structural materials with high strength and toughness are highly desirable for many advanced applications. Wood, as a sustainable structural material, is widely used in engineering due to its abundance and excellent mechanical properties. In this paper, we report a self-densification strategy to develop super-strong wood by reassembling highly aligned wood fibers as functional units and self-densified without the need for hot pressing. The resulting self-densified wood exhibits ultra-high tensile strength (496.1 MPa), flexural strength (392.7 MPa) and impact toughness (75.2 kJ/m2), surpassing those of compressed densified wood and traditional metal materials like aluminum alloys. Notably, the self-densified wood exhibits uniform shrinkage in the cross-section while maintaining its longitudinal dimension. This characteristic leads to an order-of-magnitude enhancement in the overall mechanical performance of the wood, presenting a significant advantage over compressed densified wood. Such super-strong yet lightweight wood has great potential for application as a sustainable engineering material, replacing traditional structural materials such as metals and alloys.

     

  • The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Declaration of competing interest
    Author contributions
    Mingwei Zhu, Dafang Huang and Suiyi Li designed the experiments; Jie Li and Dafang Huang contributed to material preparation and most material characterizations, data analysis; Suiyi Li and Dafang Huang contributed to manuscript writing; Jianbing Hu, Zhiru Cao and Yang Guo contributed to material preparation and mechanical tests; and Yu Ding and Yanfeng Chen helped to review manuscript. All authors commented on the final manuscript.
    Data will be made available on request.
    Availability of data
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2025.03.001.
    1 These authors contributed equally to this work.
  • loading
  • Berglund, L.A., Burgert, I., 2018. Bioinspired wood nanotechnology for functional materials. Adv. Mater. 30, e1704285. doi: 10.1002/adma.201704285
    Chen, C.J., Kuang, Y.D., Zhu, S.Z., Burgert, I., Keplinger, T., Gong, A., et al., 2020a. Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 5, 642–666. doi: 10.1038/s41578-020-0195-z
    Chen, F., Ritter, M., Xu, Y.F., Tu, K.K., Koch, S.M., Yan, W.Q., et al., 2024. Lightweight, strong, and transparent wood films produced by capillary driven self-densification. Small 20, e2311966.
    Chen, G.G., Chen, C.J., Pei, Y., He, S.M., Liu, Y., Jiang, B., et al., 2020b. A strong, flame-retardant, and thermally insulating wood laminate. Chem. Eng. J. 383, 123109. doi: 10.1016/j.cej.2019.123109
    Chen, K.X., Li, L., 2019. Ordered structures with functional units as a paradigm of material design. Adv. Mater. 31, e1901115. doi: 10.1002/adma.201901115
    Chen, S.Y., Obataya, E., Matsuo-Ueda, M., 2018. Shape fixation of compressed wood by steaming: a mechanism of shape fixation by rearrangement of crystalline cellulose. Wood Sci. Technol. 52, 1229–1241. doi: 10.1007/s00226-018-1026-x
    Chen, Y., Awasthi, A.K., Wei, F., Tan, Q.Y., Li, J.H., 2021. Single-use plastics: production, usage, disposal, and adverse impacts. Sci. Total Environ. 752, 141772. doi: 10.1016/j.scitotenv.2020.141772
    Ding, Y., Pang, Z.Q., Lan, K., Yao, Y., Panzarasa, G., Xu, L., et al., 2023. Emerging engineered wood for building applications. Chem. Rev. 123, 1843–1888. doi: 10.1021/acs.chemrev.2c00450
    Dong, X.F., Gan, W.T., Shang, Y., Tang, J.F., Wang, Y.X., Cao, Z.F., et al., 2022. Low-value wood for sustainable high-performance structural materials. Nat. Sustain. 5, 628–635. doi: 10.1038/s41893-022-00887-8
    Dursun, T., Soutis, C., 2014. Recent developments in advanced aircraft aluminium alloys. Mater. Des. 56, 862–871. doi: 10.1016/j.matdes.2013.12.002
    Erickson, E.C., 1965. Mechanical properties of laminated modified wood. USA: U.S. Dept. Of Agriculture, Wisconsin No. 1639.
    Frey, M., Biffi, G., Adobes-Vidal, M., Zirkelbach, M., Wang, Y.R., Tu, K.K., et al., 2019. Tunable wood by reversible interlocking and bioinspired mechanical gradients. Adv. Sci. 6, 1802190. doi: 10.1002/advs.201802190
    Frey, M., Widner, D., Segmehl, J.S., Casdorff, K., Keplinger, T., Burgert, I., 2018. Delignified and densified cellulose bulk materials with excellent tensile properties for sustainable engineering. ACS Appl. Mater. Interfaces 10, 5030–5037. doi: 10.1021/acsami.7b18646
    Hou, Y.Z., Guan, Q.F., Xia, J., Ling, Z.C., He, Z.Z., Han, Z.M., et al., 2021. Strengthening and toughening hierarchical nanocellulose via humidity-mediated interface. ACS Nano 15, 1310–1320. doi: 10.1021/acsnano.0c08574
    Huang, W., Restrepo, D., Jung, J.Y., Su, F.Y., Liu, Z.Q., Ritchie, R.O., et al., 2019. Multiscale toughening mechanisms in biological materials and bioinspired designs. Adv. Mater. 31, e1901561. doi: 10.1002/adma.201901561
    Hwang, S.W., Isoda, H., Nakagawa, T., Sugiyama, J., 2021. Flexural anisotropy of rift-sawn softwood boards induced by the end-grain orientation. J. Wood Sci. 67, 1–8. doi: 10.1186/s10086-020-01935-7
    Jakob, M., Mahendran, A.R., Gindl-Altmutter, W., Bliem, P., Konnerth, J., Müller, U., et al., 2022. The strength and stiffness of oriented wood and cellulose-fibre materials: a review. Prog. Mater. Sci. 125, 100916. doi: 10.1016/j.pmatsci.2021.100916
    Jin, K., Qin, Z., Buehler, M.J., 2015. Molecular deformation mechanisms of the wood cell wall material. J. Mech. Behav. Biomed. Mater. 42, 198–206. doi: 10.1016/j.jmbbm.2014.11.010
    Khakalo, A., Tanaka, A., Korpela, A., Hauru, L.K.J., Orelma, H., 2019. All-wood composite material by partial fiber surface dissolution with an ionic liquid. ACS Sustain. Chem. Eng. 7, 3195–3202. doi: 10.1021/acssuschemeng.8b05059
    Khakalo, A., Tanaka, A., Korpela, A., Orelma, H., 2020. Delignification and ionic liquid treatment of wood toward multifunctional high-performance structural materials. ACS Appl. Mater. Interfaces 12, 23532–23542. doi: 10.1021/acsami.0c02221
    Kim, S.H., Kim, H., Kim, N.J., 2015. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility. Nature 518, 77–79. doi: 10.1038/nature14144
    Kulasinski, K., Derome, D., Carmeliet, J., 2017. Impact of hydration on the micromechanical properties of the polymer composite structure of wood investigated with atomistic simulations. J. Mech. Phys. Solids 103, 221–235. doi: 10.1016/j.jmps.2017.03.016
    Kumar, A., Jyske, T., Petrič, M., 2021. Delignified wood from understanding the hierarchically aligned cellulosic structures to creating novel functional materials: a review. Adv. Sustain. Syst. 5, 2000251. doi: 10.1002/adsu.202000251
    Kutnar, A., Kamke, F.A., Sernek, M., 2008. The mechanical properties of densified VTC wood relevant for structural composites. Holz Als Roh Und Werkstoff 66, 439–446. doi: 10.1007/s00107-008-0259-z
    Kyriazidou, E., Pesendorfer, M., 1999. Viennese chairs: a case study for modern industrialization. J. Eco. History 59, 143–166. doi: 10.1017/S0022050700022324
    Li, K., Wang, S.N., Chen, H., Yang, X., Berglund, L.A., Zhou, Q., 2020a. Self-densification of highly mesoporous wood structure into a strong and transparent film. Adv. Mater. 32, e2003653. doi: 10.1002/adma.202003653
    Li, T., Chen, C.J., Brozena, A.H., Zhu, J.Y., Xu, L.X., Driemeier, C., et al., 2021. Developing fibrillated cellulose as a sustainable technological material. Nature 590, 47–56. doi: 10.1038/s41586-020-03167-7
    Li, Z.H., Chen, C.J., Mi, R.Y., Gan, W.T., Dai, J.Q., Jiao, M.L., et al., 2020b. A strong, tough, and scalable structural material from fast-growing bamboo. Adv. Mater. 32, e1906308. doi: 10.1002/adma.201906308
    Ling, S.J., Kaplan, D.L., Buehler, M.J., 2018. Nanofibrils in nature and materials engineering. Nat. Rev. Mater. 3, 18016. doi: 10.1038/natrevmats.2018.16
    Liu, Y., Li, B., Mao, W.B., Hu, W., Chen, G., Liu, Y.Y., et al., 2019. Strong cellulose-based materials by coupling sodium hydroxide-anthraquinone (NaOH-AQ) pulping with hot pressing from wood. ACS Omega 4, 7861–7865. doi: 10.1021/acsomega.9b00411
    Luan, Y., Fang, C.H., Ma, Y.F., Fei, B.H., 2022. Wood mechanical densification: a review on processing. Mater. Manuf. Process. 37, 359–371. doi: 10.1080/10426914.2021.2016816
    Maaß, M.C., Saleh, S., Militz, H., Volkert, C.A., 2020. The structural origins of wood cell wall toughness. Adv. Mater. 32, e1907693. doi: 10.1002/adma.201907693
    Marbun, S.D., Dwianto, W., Meliala, S.B.P.S., Widyorini, R., Augustina, S., Hiziroglu, S., 2023. Dimensional stability mechanisms of binderless boards by heat or steam treatment: a review. Cellulose 30, 8571–8593. doi: 10.1007/s10570-023-05429-9
    Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J., 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994. doi: 10.1039/c0cs00108b
    Naskar, A.K., Keum, J.K., Boeman, R.G., 2016. Polymer matrix nanocomposites for automotive structural components. Nat. Nanotechnol. 11, 1026–1030. doi: 10.1038/nnano.2016.262
    Rautkari, L., Properzi, M., Pichelin, F., Hughes, M., 2010. Properties and set-recovery of surface densified Norway spruce and European beech. Wood Sci. Technol. 44, 679–691. doi: 10.1007/s00226-009-0291-0
    Ritchie, R.O., 2011. The conflicts between strength and toughness. Nat. Mater. 10, 817–822. doi: 10.1038/nmat3115
    Ruan, G.M., Filz, G.H., Fink, G., 2022. Shear capacity of timber-to-timber connections using wooden nails. Wood Mater. Sci. Eng. 17, 20–29. doi: 10.1080/17480272.2021.1964595
    Saravanakumar, S.S., Kumaravel, A., Nagarajan, T., Moorthy, I.G., 2014. Investigation of physico-chemical properties of alkali-treated Prosopis juliflora fibers. Int. J. Polym. Anal. Charact. 19, 309–317. doi: 10.1080/1023666X.2014.902527
    Schubert, M., Panzarasa, G., Burgert, I., 2023. Sustainability in wood products: a new perspective for handling natural diversity. Chem. Rev. 123, 1889–1924. doi: 10.1021/acs.chemrev.2c00360
    Solhi, L., Guccini, V., Heise, K., Solala, I., Niinivaara, E., Xu, W.Y., et al., 2023. Understanding nanocellulose-water interactions: turning a detriment into an asset. Chem. Rev. 123, 1925–2015. doi: 10.1021/acs.chemrev.2c00611
    Song, J.W., Chen, C.J., Zhu, S.Z., Zhu, M.W., Dai, J.Q., Ray, U., et al., 2018. Processing bulk natural wood into a high-performance structural material. Nature 554, 224–228. doi: 10.1038/nature25476
    Sreenivasan, V.S., Somasundaram, S., Ravindran, D., Manikandan, V., Narayanasamy, R., 2011. Microstructural, physico-chemical and mechanical characterisation of Sansevieria cylindrica fibres: an exploratory investigation. Mater. Des. 32, 453–461. doi: 10.1016/j.matdes.2010.06.004
    Tarkow, H.R.S., 1968. Surface densification of wood. For. Prod. J. 18, 104–110.
    Wan, Y.F., An, F., Zhou, P.C., Li, Y.H., Liu, Y.D., Lu, C.X., et al., 2017. Regenerated cellulose Ⅰ from LiCl·DMAc solution. Chem. Commun. 53, 3595–3597. doi: 10.1039/C7CC00450H
    Yang, X.P., Biswas, S.K., Han, J.Q., Tanpichai, S., Li, M.C., Chen, C.C., et al., 2021. Surface and interface engineering for nanocellulosic advanced materials. Adv. Mater. 33, e2002264. doi: 10.1002/adma.202002264
    Yano, H., Hirose, A., Inaba, S., 1997. High-strength wood-based materials. J. Mater. Sci. Lett. 16, 1906–1909. doi: 10.1023/A:1018578431873
    Zhang, C., Chen, M.Y., Keten, S., Coasne, B., Derome, D., Carmeliet, J., 2021. Hygromechanical mechanisms of wood cell wall revealed by molecular modeling and mixture rule analysis. Sci. Adv. 7, eabi8919. doi: 10.1126/sciadv.abi8919
    Zheng, K.L., Politis, D.J., Wang, L.L., Lin, J.G., 2018. A review on forming techniques for manufacturing lightweight complex: shaped aluminium panel components. Int. J. Light. Mater. Manuf. 1, 55–80.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (35) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return