Volume 10 Issue 2
May  2025
Turn off MathJax
Article Contents
Quan Zhou, Zijing Zhao, Litao Wang, Jiandong Wang, Lina Fu, Jihong Cui, Guosheng Liu, Jie Yang, Yujie Fu. Immobilized enzyme microreactor system with bamboo-based cellulose nanofibers for efficient biotransformation of phytochemicals[J]. Journal of Bioresources and Bioproducts, 2025, 10(2): 224-238. doi: 10.1016/j.jobab.2025.03.004
Citation: Quan Zhou, Zijing Zhao, Litao Wang, Jiandong Wang, Lina Fu, Jihong Cui, Guosheng Liu, Jie Yang, Yujie Fu. Immobilized enzyme microreactor system with bamboo-based cellulose nanofibers for efficient biotransformation of phytochemicals[J]. Journal of Bioresources and Bioproducts, 2025, 10(2): 224-238. doi: 10.1016/j.jobab.2025.03.004

Immobilized enzyme microreactor system with bamboo-based cellulose nanofibers for efficient biotransformation of phytochemicals

doi: 10.1016/j.jobab.2025.03.004
Funds:

This work was supported by National Natural Science Foundation of China (No. 32271805), National Science and Technology Innovation Project (No. 2022XACX1100), National Key R&D Program of China (No. 2022YFD2200602), the 111 Center (No. B20088) and 5·5 Engineering Research & Innovation Team Project of Beijing Forestry University (No. BLRC2023A01).

  • Available Online: 2025-05-09
  • Publish Date: 2025-03-28
  • The enzyme immobilization technique has been widely applied in biotechnology, biomedicine, and environmental remediation. In this research, carboxylated bamboo-based cellulose nanofibers (BCNFs) were obtained by one-step oxidation modification of bamboo fibers using ammonium persulphate. The surface carboxyl groups of the BCNFs were modified by a crosslinking agent and then combined with polyethylene imine (PEI) functionalized magnetic nanoparticles to construct a microreactor system for enzyme loading by the methods of electrostatic self-assembly and physical adsorption. Contrasted with free β-glucosidase, the microreactor possesses higher relative enzyme activity at pH 5.5 and 50 °C, and the storage stability is significantly higher, with >75% relative enzyme activity after storage at 4 °C for 15 d. In addition, the β-glucosidase loaded on the microreactor facilitates its separation from the reaction medium and subsequent reuse. After completing five cycles of use, it retained 76.47% of its initial activity. The biotransformation of geniposide reached 93.10%, and the genipin concentration increased 1.2 folds higher than that in the original plant extract. Therefore, PEI@Fe3O4@BCNFs microreactor immobilized with β-glucosidase can be successfully used to produce higher activity aglucone such as genipin from geniposide, and it might also have the potential to convert phytochemicals by the immobilized enzyme microreactor system with bamboo-based cellulose nanofibers in the natural production field.

     

  • loading
  • [1]
    Adel, A., El-Shafei, A., Ibrahim, A., Al-Shemy, M., 2018. Extraction of oxidized nanocellulose from date palm (Phoenix dactylifera L.) sheath fibers: Influence of CI and CII polymorphs on the properties of chitosan/bionanocomposite films. Ind. Crops Prod. 124, 155-165.
    [2]
    Ahmad, M.I., Bensalah, N., 2022. Insights into the generation of hydroxyl radicals from H2O2 decomposition by the combination of Fe2+ and chloranilic acid. Int. J. Environ. Sci. Technol. 19, 10119-10130.
    [3]
    Ariaeenejad, S., Hosseini, E., Motamedi, E., Moosavi-Movahedi, A.A., Salekdeh, G.H., 2019. Application of carboxymethyl cellulose-g-poly(acrylic acid-co-acrylamide) hydrogel sponges for improvement of efficiency, reusability and thermal stability of a recombinant xylanase. Chem. Eng. J. 375, 122022.
    [4]
    Ariaeenejad, S., Motamedi, E., Hosseini Salekdeh, G., 2021. Immobilization of enzyme cocktails on dopamine functionalized magnetic cellulose nanocrystals to enhance sugar bioconversion: A biomass reusing loop. Carbohydr. Polym. 256, 117511.
    [5]
    Balakrishnan, A., Jacob, M.M., Chinthala, M., Dayanandan, N., Ponnuswamy, M., Vo, D.N., 2024. Photocatalytic sponges for wastewater treatment, carbon dioxide reduction, and hydrogen production: A review. Environ. Chem. Lett. 22, 635-656.
    [6]
    Banjanac, K., Carević, M., Ćorović, M., Milivojević, A., Prlainović, N., Marinković, A., Bezbradica, D., 2016. Novel β-galactosidase nanobiocatalyst systems for application in the synthesis of bioactive galactosides. RSC Adv. 6, 97216-97225.
    [7]
    Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.
    [8]
    Chen, C.J., Kuang, Y.D., Zhu, S.Z., Burgert, I., Keplinger, T., Gong, A., Li, T., Berglund, L., Eichhorn, S.J., Hu, L.B., 2020. Structure-property-function relationships of natural and engineered wood. Nat. Rev. Mater. 5, 642-666.
    [9]
    Chen, Z.Y., Xie, Z.Y., Jiang, H., 2023. Extraction of the cellulose nanocrystals via ammonium persulfate oxidation of beaten cellulose fibers. Carbohydr. Polym. 318, 121129.
    [10]
    Devireddy, S.B.R., Biswas, S., 2016. Physical and thermal properties of unidirectional banana-jute hybrid fiber-reinforced epoxy composites. J. Reinf. Plast. Compos. 35, 1157-1172.
    [11]
    Dong, Y.S., Liu, L.P., Bao, Y.M., Hao, A.Y., Qin, Y., Wen, Z.J., Xiu, Z.L., 2014. Biotransformation of geniposide in Gardenia jasminoides to genipin by Trichoderma harzianum CGMCC 2979. Chin. J. Catal. 35, 1534-1546.
    [12]
    Du, Y.C., Feng, G.F., 2023. When nanocellulose meets hydrogels: The exciting story of nanocellulose hydrogels taking flight. Green Chem. 25, 8349-8384.
    [13]
    Gennari, A., Führ, A.J., Volpato, G., Volken de Souza, C.F., 2020. Magnetic cellulose: Versatile support for enzyme immobilization—A review. Carbohydr. Polym. 246, 116646.
    [14]
    Gkantzou, E., Chatzikonstantinou, A.V., Fotiadou, R., Giannakopoulou, A., Patila, M., Stamatis, H., 2021. Trends in the development of innovative nanobiocatalysts and their application in biocatalytic transformations. Biotechnol. Adv. 51, 107738.
    [15]
    Guo, K.N., Zhang, C., Xu, L.H., Sun, S.C., Wen, J.L., Yuan, T.Q., 2022. Efficient fractionation of bamboo residue by autohydrolysis and deep eutectic solvents pretreatment. Bioresour. Technol. 354, 127225.
    [16]
    Hosseini, S.H., Hosseini, S.A., Zohreh, N., Yaghoubi, M., Pourjavadi, A., 2018. Covalent immobilization of cellulase using magnetic poly(ionic liquid) support: improvement of the enzyme activity and stability. J. Agric. Food Chem. 66, 789-798.
    [17]
    Hou, G.Y., Chitbanyong, K., Shibata, I., Takeuchi, M., Isogai, A., 2024a. Structural analyses of supernatant fractions in TEMPO-oxidized pulp/water reaction mixtures separated by centrifugation and dialysis. Carbohydr. Polym. 336, 122103.
    [18]
    Hou, H.Q., Xu, F.R., Ding, X.X., Zheng, L., Shi, J., 2024b. Magnetic biocatalytic nanoreactors based on graphene oxide with graded reduction degrees for the enzymatic synthesis of phytosterol esters. Carbon N Y 226, 119170.
    [19]
    Jatti, K., Vaishnav, P., Titiksh, A., 2016. Evaluating the performance of hybrid fiber reinforced concrete dosed with polyvinyl alcohol. Int. J. Trend Res. Developm. 3, 354-357.
    [20]
    Je, H.H., Noh, S., Hong, S.G., Ju, Y., Kim, J., Hwang, D.S., 2017. Cellulose nanofibers for magnetically-separable and highly loaded enzyme immobilization. Chem. Eng. J. 323, 425-433.
    [21]
    Jiang, H., Wu, Y., Han, B.B., Zhang, Y., 2017. Effect of oxidation time on the properties of cellulose nanocrystals from hybrid poplar residues using the ammonium persulfate. Carbohydr. Polym. 174, 291-298.
    [22]
    Jiang, Q.S., Li, Y.J., Wang, M.M., Cao, W., Yang, X.Y., Zhang, S.H., Guo, L.J., 2024. In-situ honeycomb spheres for enhanced enzyme immobilization and stability. Chem. Eng. J. 495, 153583.
    [23]
    Khanjanzadeh, H., Park, B.D., 2021. Optimum oxidation for direct and efficient extraction of carboxylated cellulose nanocrystals from recycled MDF fibers by ammonium persulfate. Carbohydr. Polym. 251, 117029.
    [24]
    Li, L.L., Guo, Y.P., Zhao, L.F., Zu, Y.G., Gu, H.Y., Yang, L., 2015. Enzymatic hydrolysis and simultaneous extraction for preparation of genipin from bark of Eucommia ulmoides after ultrasound, microwave pretreatment. Molecules 20, 18717-18731.
    [25]
    Li, L., Zhou, L., Song, G.S., Wang, D.L., Xiao, G.N., Zheng, F.P., Gong, J.Y., 2023. High efficiency biosynthesis of Gardenia blue and red pigment by lactic acid bacteria: A great potential for natural color pigments. Food Chem. 417, 135868.
    [26]
    Li, Z.H., Chen, C.J., Xie, H., Yao, Y., Zhang, X., Brozena, A., Li, J.G., Ding, Y., Zhao, X.P., Hong, M., Qiao, H.Y., Smith, L.M., Pan, X.J., Briber, R., Shi, S.Q., Hu, L.B., 2021. Sustainable high-strength macrofibres extracted from natural bamboo. Nat. Sustain. 5, 235-244.
    [27]
    Li, Q.H., Yu, D.D., Peng, J., Zhang, W., Huang, J.L., Liang, Z.X., Wang, J.L., Lin, Z.Y., Xiong, S.Y., Wang, J.Z., Huang, S.M., 2024. Efficient polytelluride anchoring for ultralong-life potassium storage: Combined physical barrier and chemisorption in nanogrid-in-nanofiber. Nano-Micro Lett. 16, 77.
    [28]
    Lin, K., Xia, A., Huang, Y., Zhu, X.Q., Cai, K.Y., Wei, Z.D., Liao, Q., 2022. Efficient production of sugar via continuous enzymatic hydrolysis in a microreactor loaded with cellulase. Chem. Eng. J. 445, 136633.
    [29]
    Lin, K., Xia, A., Huang, Y., Zhu, X.Q., Zhu, X., Cai, K.Y., Wei, Z.D., Liao, Q., 2023. How can vanillin improve the performance of lignocellulosic biomass conversion in an immobilized laccase microreactor system? Bioresour. Technol. 374, 128775.
    [30]
    Liu, J.J., Zhang, J.M., Zhang, B.Q., Zhang, X.Y., Xu, L.L., Zhang, J., He, J.S., Liu, C.Y., 2016. Determination of intrinsic viscosity-molecular weight relationship for cellulose in BmimAc/DMSO solutions. Cellulose 23, 2341-2348.
    [31]
    Liu, Q., Li, Y., Xing, S., Wang, L., Yang, X.D., Hao, F., Liu, M.X., 2022. Genipin-crosslinked amphiphilic chitosan films for the preservation of strawberry. Int. J. Biol. Macromol. 213, 804-813.
    [32]
    Liu, K.M., Song, W.L., Cui, C.J., Jiao, R.J., Yu, X., Wang, J., Li, K., Qian, W.Z., 2023. Process simulation of diesel into aromatics and carbon nanotubes: A techno and economic analyses. ACS Omega 8, 17941-17947.
    [33]
    Luzi, F., Puglia, D., Sarasini, F., Tirillò, J., Maffei, G., Zuorro, A., Lavecchia, R., Kenny, J.M., Torre, L., 2019. Valorization and extraction of cellulose nanocrystals from North African grass: Ampelodesmos mauritanicus (Diss). Carbohydr. Polym. 209, 328-337.
    [34]
    Lv, J.J., Wang, Y.F., Zhang, C.Y., You, S.P., Qi, W., Su, R.X., He, Z.M., 2019. Highly efficient production of FAMEs and β-farnesene from a two-stage biotransformation of waste cooking oils. Energy Convers. Manag. 199, 112001.
    [35]
    Mai, X.M., Mai, J.P., Liu, H.J., Liu, Z.J., Wang, R.J., Wang, N., Li, X., Zhong, J., Deng, Q.J., Zhang, H.Q., 2022. Advanced bamboo composite materials with high-efficiency and long-term anti-microbial fouling performance. Adv. Compos. Hybrid Mater. 5, 864-871.
    [36]
    Meng, S.X., Xue, L.H., Xie, C.Y., Bai, R.X., Yang, X., Qiu, Z.P., Guo, T., Wang, Y.L., Meng, T., 2018. Enhanced enzymatic reaction by aqueous two-phase systems using parallel-laminar flow in a double Y-branched microfluidic device. Chem. Eng. J. 335, 392-400.
    [37]
    Misnon, M.I., Islam, M.M., Epaarachchi, J.A., Lau, K.T., 2014. Potentiality of utilising natural textile materials for engineering composites applications. Mater. Des. 59, 359-368.
    [38]
    Norkrans, B., 1957. Studies of β-glucoside- and cellulose splitting enzymes from Polyporus annosus Fr. Physiol. Plant. 10, 198-214.
    [39]
    Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A., Johnson, D.K., 2010. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 3, 10.
    [40]
    Popescu, C.M., Singurel, G., Popescu, M.C., Vasile, C., Argyropoulos, D.S., Willför, S., 2009. Vibrational spectroscopy and X-ray diffraction methods to establish the differences between hardwood and softwood. Carbohydr. Polym. 77, 851-857.
    [41]
    Prabhakar, T., Giaretta, J., Zulli, R., Rath, R.J., Farajikhah, S., Talebian, S., Dehghani, F., 2025. Covalent immobilization: A review from an enzyme perspective. Chem. Eng. J. 503, 158054.
    [42]
    Prakash, C., Ramakrishnan, G., 2014. Study of thermal properties of bamboo/cotton blended single jersey knitted fabrics. Arab. J. Sci. Eng. 39, 2289-2294.
    [43]
    Saito, T., Kimura, S., Nishiyama, Y., Isogai, A., 2007. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8, 2485-2491.
    [44]
    Sathishkumar, P., Kamala-Kannan, S., Cho, M., Kim, J.S., Hadibarata, T., Salim, M.R., Oh, B.T., 2014. Laccase immobilization on cellulose nanofiber: The catalytic efficiency and recyclic application for simulated dye effluent treatment. J. Mol. Catal. B Enzym. 100, 111-120.
    [45]
    Sehaqui, H., Gálvez, M.E., Becatinni, V., Ng, Y., Steinfeld, A., Zimmermann, T., Tingaut, P., 2015. Fast and reversible direct CO2 capture from air onto all-polymer nanofibrillated cellulose-polyethylenimine foams. Environ. Sci. Technol. 49, 3167-3174.
    [46]
    Sirviö, J.A., Ukkola, J., Liimatainen, H., 2019. Direct sulfation of cellulose fibers using a reactive deep eutectic solvent to produce highly charged cellulose nanofibers. Cellulose 26, 2303-2316.
    [47]
    Thakur, V.K., Thakur, M.K., Gupta, R.K., 2014. Review: Raw natural fiber-based polymer composites. Int. J. Polym. Anal. Charact. 19, 256-271.
    [48]
    Tripathi, M., Sharma, M., Bala, S., Connell, J., Newbold, J.R., Rees, R.M., Aminabhavi, T.M., Thakur, V.K., Gupta, V.K., 2023. Conversion technologies for valorization of hemp lignocellulosic biomass for potential biorefinery applications. Sep. Purif. Technol. 320, 124018.
    [49]
    Tušek, A.J., Tišma, M., Bregović, V., Ptičar, A., Kurtanjek, Ž., Zelić, B., 2013. Enhancement of phenolic compounds oxidation using laccase from Trametes versicolor in a microreactor. Biotechnol. Bioprocess Eng. 18, 686-696.
    [50]
    Wang, X.Q., Keplinger, T., Gierlinger, N., Burgert, I., 2014. Plant material features responsible for bamboo's excellent mechanical performance: A comparison of tensile properties of bamboo and spruce at the tissue, fibre and cell wall levels. Ann. Bot. 114, 1627-1635.
    [51]
    Wang, B., Wang, J.M., Hu, Z.H., Zhu, A.L., Shen, X.J., Cao, X.F., Wen, J.L., Yuan, T.Q., 2024. Harnessing renewable lignocellulosic potential for sustainable wastewater purification. Research 7, 347.
    [52]
    Xu, M.M., Sun, Q., Su, J., Wang, J.F., Xu, C., Zhang, T., Sun, Q.L., 2008. Microbial transformation of geniposide in Gardenia jasminoides Ellis into genipin by Penicillium nigricans. Enzyme Microb. Technol. 42, 440-444.
    [53]
    Xu, H.Y., Sanchez-Salvador, J.L., Blanco, A., Balea, A., Negro, C., 2023. Recycling of TEMPO-mediated oxidation medium and its effect on nanocellulose properties. Carbohydr. Polym. 319, 121168.
    [54]
    Xu, R., Chen, J.W., Yan, N.N., Xu, B.Q., Lou, Z.C., Xu, L., 2025. High-value utilization of agricultural residues based on component characteristics: Potentiality and challenges. J. Bioresour. Bioprod. https://doi.org/10.1016/j.jobab.2025.01.002.
    [55]
    Yan, L.B., Chouw, N., Jayaraman, K., 2014. Flax fibre and its composites: A review. Compos. Part B Eng. 56, 296-317.
    [56]
    Yang, Y.S., Zhang, T., Yu, S.C., Ding, Y., Zhang, L.Y., Qiu, C., Jin, D., 2011. Transformation of geniposide into genipin by immobilized β-glucosidase in a two-phase aqueous-organic system. Molecules 16, 4295-4304.
    [57]
    Yang, H., Chen, D.Z., van de Ven, T.G.M., 2015. Preparation and characterization of sterically stabilized nanocrystalline cellulose obtained by periodate oxidation of cellulose fibers. Cellulose 22, 1743-1752.
    [58]
    Zeng, Q.H., Li, H.R., Zhu, Y.Y., Zhou, J.J., Zhu, J.J., Xu, Y., 2024. Efficient co-production of glucose and carboxylated cellulose nanocrystals from cellulose-rich biomass waste residues via low enzymatic pre-hydrolysis and persulfate oxidation. Ind. Crops Prod. 220, 119279.
    [59]
    Zhan, B.X., Zhang, L., Deng, Y.Q., Fan, M.H., Yan, L.F., 2024. Sustainable adhesives for ultra-composites from biomass powder. Chem. Eng. J. 485, 149984.
    [60]
    Zhang, K.T., Sun, P.P., Liu, H., Shang, S.B., Song, J., Wang, D., 2016. Extraction and comparison of carboxylated cellulose nanocrystals from bleached sugarcane bagasse pulp using two different oxidation methods. Carbohydr. Polym. 138, 237-243.
    [61]
    Zhang, W.B., Fei, B.H., Polle, A., Euring, D., Tian, G.L., Yue, X.H., Chang, Y.T., Jiang, Z.H., Hu, T., 2019. Crystal and thermal response of cellulose isolation from bamboo by two different chemical treatments. Bioresources 14, 3471-3480.
    [62]
    Zhang, D.Y., Wan, Y., Yao, X.H., Chen, C., Ju, Y.X., Shuang, F.F., Fu, Y.J., Chen, T., Zhao, W.G., Liu, L., Li, L., 2020. Fabrication of three-dimensional porous cellulose microsphere bioreactor for biotransformation of polydatin to resveratrol from Polygonum cuspidatum Siebold & Zucc. Ind. Crops Prod. 144, 112029.
    [63]
    Zhang, S.D., Lin, Q.Q., Wang, X.Y., Yu, Y.L., Yu, W.J., Huang, Y.X., 2022. Bamboo cellulose fibers prepared by different drying methods: Structure-property relationships. Carbohydr. Polym. 296, 119926.
    [64]
    Zheng, D., Zheng, Y.L., Tan, J.J., Zhang, Z.J., Huang, H., Chen, Y., 2024. Co-immobilization of whole cells and enzymes by covalent organic framework for biocatalysis process intensification. Nat. Commun. 15, 5510.
    [65]
    Zhang, Q.Y., Yan, R.J., Xiong, Y.Y., Lei, H., Du, G.B., Pizzi, A., Puangsin, B., Xi, X.D., 2025. Preparation and characterization of polymeric cellulose wood adhesive with excellent bonding properties and water resistance. Carbohydr. Polym. 347, 122705.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (10) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return