Volume 10 Issue 4
Nov.  2025
Turn off MathJax
Article Contents
Yongjin Wang, Wei Bao, Hanyu Li, Lei Fang, Hongguo Gao, Kuanjun Fang. Sustainable anti-fibrillation and multifunction enhancement of lyocell fabric via electrostatic adsorption and discontinuous membrane formation[J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 576-588. doi: 10.1016/j.jobab.2025.05.003
Citation: Yongjin Wang, Wei Bao, Hanyu Li, Lei Fang, Hongguo Gao, Kuanjun Fang. Sustainable anti-fibrillation and multifunction enhancement of lyocell fabric via electrostatic adsorption and discontinuous membrane formation[J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 576-588. doi: 10.1016/j.jobab.2025.05.003

Sustainable anti-fibrillation and multifunction enhancement of lyocell fabric via electrostatic adsorption and discontinuous membrane formation

doi: 10.1016/j.jobab.2025.05.003
More Information
  • Lyocell is a type of regenerated cellulose fiber with an eco-friendly production process and desirable properties. However, it is susceptible to fibrillation, which often results in pilling and diminished color appearance after laundering. Conventional anti-fibrillation methods are plagued by drawbacks such as significant strength loss, low utilization rates, formaldehyde release, and yellowing. To overcome these challenges, we developed an innovative approach involving the treatment of lyocell fibers with a cationic modifier (CM), poly(diallyldimethylammonium chloride), followed by the application of anionic polyacrylic acid emulsions (AEs). The effects of AE concentration, curing temperature, and curing time on anti-fibrillation performance were systematically evaluated. Through scanning electron microscopy (SEM), zeta potential, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FT-IR) analyses, we demonstrated that the anionic latex was effectively adsorbed onto the CM-treated fiber surface via electrostatic interactions. Upon curing, a discontinuous film formed on the fiber surface, which hindered water penetration and enhanced lateral cohesion between microfibrils under wet conditions. As a result, the modified fabrics exhibited markedly improved anti-fibrillation performance without compromising mechanical properties or whiteness. Furthermore, the air permeability of wet fabrics increased by 46.4%, and dyeing properties and glossiness were markedly enhanced. The results also indicate that this treatment has good abrasion resistance and durability. This study introduces a sustainable strategy for achieving multifunctional performance and green dyeability in cellulose textiles, thereby expanding their potential applications.

     

  • Declaration of competing interest
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    CRediT authorship contribution statement
    Yongjin Wang: Data curation, Writing – original draft. Wei Bao: Writing – original draft, Writing – review & editing. Hanyu Li: Writing – review & editing, Funding acquisition. Lei Fang: Writing – review & editing, Methodology. Hongguo Gao: Data curation. Kuanjun Fang: Conceptualization, Methodology, Funding acquisition, Writing – review & editing.
    Peer review under the responsibility of Editorial Office of Journal of Bioresources and Bioproducts.
  • loading
  • Akhlaghi Bagherjeri, M., Monhemi, H., Haque, A.N.M.A., Naebe, M., 2024. Molecular mechanism of cellulose dissolution in N-methyl morpholine-N-oxide: a molecular dynamics simulation study. Carbohydr. Polym. 323, 121433. doi: 10.1016/j.carbpol.2023.121433
    Arık, B., Yavaş, A., Avinc, O., 2017. Antibacterial and wrinkle resistance improvement of nettle biofibre using chitosan and BTCA. Fibres Text. East. Eur. 25, 106–111. doi: 10.5604/01.3001.0010.1698
    Awadallah-F, A., Naguib, H.F., 2017. Grafting of tea waste with polyacrylic acid and its potential applications. Polym. Bull. 74, 4659–4679. doi: 10.1007/s00289-017-1981-7
    Babar, A.A., Bughio, N.U.A., Peerzada, M.H., Naveed, T., Dayo, A.Q., 2019. Exhaust reactive dyeing of lyocell fabric with ultrasonic energy. Ultrason. Sonochem. 58, 104611. doi: 10.1016/j.ultsonch.2019.05.028
    Bates, I., Ibbett, R., Reisel, R., Renfrew, A.H.M., 2008. Protection of lyocell fibres against fibrillation; influence of dyeing with bis-monochloro-s-triazinyl reactive dyes. Color. Technol. 124, 254–258. doi: 10.1111/j.1478-4408.2008.00149.x
    Bui, H.M., Ehrhardt, A., Bechtold, T., 2009. CI Reactive Black 5 dye as a visible crosslinker to improve physical properties of lyocell fabrics. Cellulose 16, 27–35. doi: 10.1007/s10570-008-9239-z
    Chaudemanche, C., Navard, P., 2011. Swelling and dissolution mechanisms of regenerated Lyocell cellulose fibers. Cellulose 18, 1–15. doi: 10.1007/s10570-010-9460-4
    Dhiman, G., Chakraborty, J.N., 2017. Assessment of durable press performance of cotton finished with modified DMDHEU and citric acid. Fash. Text. 4, 1–18. doi: 10.1186/s40691-016-0085-6
    Ding, Q., Liu, J.L., Liu, Y.Y., He, W.Z., Zhang, L., Xu, Y.J., 2024. Durable antibacterial cotton fabrics with good performance enabled by quaternary ammonium salts. Cellulose 31, 6551–6564. doi: 10.1007/s10570-024-05991-w
    Edgar, K.J., Zhang, H.H., 2020. Antibacterial modification of lyocell fiber: a review. Carbohydr. Polym. 250, 116932. doi: 10.1016/j.carbpol.2020.116932
    Feng, B.H., Ren, Y.F., Shi, L.J., Xue, Z., Li, X., Xiao, Z.C., et al. 2024. Efficient anti-fibrillation of lyocell fabric by low-formaldehyde resin. Ind. Crops Prod. 213, 118406. doi: 10.1016/j.indcrop.2024.118406
    Gauss, C., Pickering, K.L., Graupner, N., Müssig, J., 2023.3D-printed polylactide composites reinforced with short lyocell fibres: enhanced mechanical properties based on bio-inspired fibre fibrillation and post-print annealing. Addit. Manuf. 77, 103806.
    Goswami, P., Blackburn, R.S., Taylor, J., Westland, S., White, P., 2007. Dyeing behaviour of lyocell fabric: effect of fibrillation. Color. Technol. 123, 387–393. doi: 10.1111/j.1478-4408.2007.00113.x
    Graupner, N., Schmidt, S., Gauss, C., Müssig, J., 2023. Making positive use of the fibrillation of lyocell fibres in composite materials. Compos. Part C Open Access 11, 100359. doi: 10.1016/j.jcomc.2023.100359
    Guo, Y.W., Li, C.L., Li, X., Xu, H., Chen, W.C., Fang, K.J., et al., 2023. Fabrication of superhydrophobic cotton fabric with multiple durability and wearing comfort via an environmentally friendly spraying method. Ind. Crops Prod. 194, 116359. doi: 10.1016/j.indcrop.2023.116359
    Ji, B.L., Zhao, C.Y., Yan, K.L., Sun, G., 2016. Effects of acid diffusibility and affinity to cellulose on strength loss of polycarboxylic acid crosslinked fabrics. Carbohydr. Polym. 144, 282–288. doi: 10.1016/j.carbpol.2016.02.036
    Ke, G.Z., Xiao, Z.H., Jin, X.Y., Yu, L.X., Li, J.Q., Zhang, H.X., 2020. Wrinkle recovery angle enhancement and tensile strength loss of 1, 2, 3, 4-butanetetracarboxylic acid finished lyocell fabrics. Text. Res. J. 90, 2097–2108. doi: 10.1177/0040517520912035
    Li, B., Dong, Y.C., Wang, P., Cui, G.X., 2016. Release behavior and kinetic evaluation of formaldehyde from cotton clothing fabrics finished with DMDHEU-based durable press agents in water and synthetic sweat solution. Text. Res. J. 86, 1738–1749. doi: 10.1177/0040517515606356
    Li, C.L., Du, L.X., Xie, R.Y., 2025. Tri-functional aziridine-induced cellulose crosslinking network for enhanced fibrillation resistance of low-carbon lyocell fiber. Cellulose 32, 2087–2105. doi: 10.1007/s10570-025-06386-1
    Li, T., Chen, C.J., Brozena, A.H., Zhu, J.Y., Xu, L.X., Driemeier, C., et al. 2021. Developing fibrillated cellulose as a sustainable technological material. Nature 590, 47–56. doi: 10.1038/s41586-020-03167-7
    Ma, Y.B., Rissanen, M., You, X., Moriam, K., Hummel, M., Sixta, H., 2021. New method for determining the degree of fibrillation of regenerated cellulose fibres. Cellulose 28, 31–44. doi: 10.1007/s10570-020-03513-y
    Magalhães, S., Fernandes, C., Pedrosa, J.F.S., Alves, L., Medronho, B., Ferreira, P.J.T., et al. 2023. Eco-friendly methods for extraction and modification of cellulose: an overview. Polymers (Basel) 15, 3138. doi: 10.3390/polym15143138
    Meng, X.X., Chen, X.Q., Zhu, C.J., Fu, Y.J., Li, W., Shen, F., et al., 2024. Preparation and performance characterization of Lyocell grade dissolving pulp composites from the lignocellulosic materials. Adv. Compos. Hybrid Mater. 7, 204. doi: 10.54097/2eq7tb56
    Okubayashi, S., Bechtold, T., 2005. Alkali uptake and swelling behavior of lyocell fiber and their effects on crosslinking reaction. Cellulose 12, 459–467. doi: 10.1007/s10570-005-2204-1
    Peng, H.T., Zhang, P., Xie, J.P., Zhang, Z., Cao, X.W., 2021. Properties of cotton fabrics treated by etherification and esterification and esterification/addition crosslinking with an amino-functional silicon softener. Cellulose 28, 7341–7354. doi: 10.1007/s10570-021-03961-0
    Song, J., Long, F.Q., Shi, Y.F., Cao, L.L., 2022. Lyocell fiber modified with Schiff base-Cu(Ⅱ) reaction and its excellent antimicrobial properties. Cellulose 29, 5325–5338. doi: 10.1007/s10570-022-04593-8
    Tan, W., Gao, L.X., Su, J.N., Zuo, C.L., Jiang, L.N., Zhao, J.Y., et al. 2024. Mussel-inspired biomimetic surface functionalization strategy for the preparation of flame retardant, UV-resistant and mechanical-enhanced lyocell fabrics. Appl. Surf. Sci. 655, 159648. doi: 10.1016/j.apsusc.2024.159648
    Tang, P.X., Ji, B.L., Sun, G., 2016. Whiteness improvement of citric acid crosslinked cotton fabrics: H2O2 bleaching under alkaline condition. Carbohydr. Polym. 147, 139–145. doi: 10.1016/j.carbpol.2016.04.007
    Wang, J.K., Fang, K.J., Liu, X.M., Zhang, S., Qiao, X.R., Liu, D.D., 2023. A review on the status of formaldehyde-free anti-wrinkle cross-linking agents for cotton fabrics: mechanisms and applications. Ind. Crops Prod. 200, 116831. doi: 10.1016/j.indcrop.2023.116831
    Wu, J., Fu, R.R., Xiao, M.C., Zheng, Q.M., Wu, L., Fang, K.J., et al., 2024. Synergetic construction of color and multifunction for sustainable lyocell fabric by microbial nano pigment. Chem. Eng. J. 481, 148453. doi: 10.1016/j.cej.2023.148453
    Yao, W.T., Wang, B.J., Ye, T., Yang, Y.Q., 2013. Durable press finishing of cotton fabrics with citric acid: enhancement of whiteness and wrinkle recovery by polyol extenders. Ind. Eng. Chem. Res. 52, 16118–16127. doi: 10.1021/ie402747x
    Zhang, L.X., Fang, K.J., Fang, L., Li, H.Y., Gao, H.G., Ge, X.C., et al., 2025. Efficient single yarn crosslinking process for lyocell: anti-fibrillation, high air permeability and water saving. J. Clean. Prod. 500, 145221. doi: 10.1016/j.jclepro.2025.145221
    Zheng, H.L., Sun, Y.J., Guo, J.S., Li, F.T., Fan, W., Liao, Y., et al., 2014. Characterization and evaluation of dewatering properties of PADB, a highly efficient cationic flocculant. Ind. Eng. Chem. Res. 53, 2572–2582. https://doi.org/10.1021/ie403635y.
    Zheng, Q.M., Wang, L., Hao, L.Y., Wu, J., Fu, R.R., Du, L.X., et al., 2024a. Synergetic construction of color and multifunction for sustainable lyocell fabric by Coptis chinensis and BTCA. Int. J. Biol. Macromol. 281, 136595. doi: 10.1016/j.ijbiomac.2024.136595
    Zheng, Q.M., Zhang, W.J., Wang, L., Wen, X., Wu, J., Ren, Y.F., et al., 2024b Functional dyeing of cellulose macromolecule/synthetic fibers two-component fabrics with sustainable microbial prodigiosins. Int. J. Biol. Macromol. 278, 134964. doi: 10.1016/j.ijbiomac.2024.134964
    Zhu, P., Liu, J., 2018. Preparation and properties of cross-linked regenerated cellulose fibers. J. Text. Sci. Eng. 8: 1–5. doi: 10.1117/1.jmi.5.4.044503
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (24) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return