Volume 10 Issue 4
Nov.  2025
Turn off MathJax
Article Contents
Iris Correia, Maria Eduarda Fernandes, Dorinda Marques-da-Silva. Unveiling the potential of olive oil production residues as adsorbent materials for water treatment: A literature review ✩[J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 460-475. doi: 10.1016/j.jobab.2025.07.001
Citation: Iris Correia, Maria Eduarda Fernandes, Dorinda Marques-da-Silva. Unveiling the potential of olive oil production residues as adsorbent materials for water treatment: A literature review [J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 460-475. doi: 10.1016/j.jobab.2025.07.001

Unveiling the potential of olive oil production residues as adsorbent materials for water treatment: A literature review

doi: 10.1016/j.jobab.2025.07.001
More Information
  • Corresponding author: E-mail address: dorinda.silva@ipleiria.pt (D. Marques-da-Silva)
  • Received Date: 2025-02-24
  • Accepted Date: 2025-06-11
  • Rev Recd Date: 2025-06-06
  • Available Online: 2025-07-08
  • Publish Date: 2025-11-01
  • Olive oil is a nutritionally and economically valuable product whose global production has steadily increased, alongside the generation of large volumes of solid and liquid waste. Olive oil mill wastewater and solid residues such as olive pomace and olive stones have become major environmental concerns due to their high pollutant load. At the same time, these byproducts offer an opportunity: their valorization as low-cost, sustainable adsorbents for water treatment. Addressing this dual environmental challenge, this review provides a comprehensive and systematized synthesis of the current state of research on the use of olive oil production residues for water decontamination via adsorption. Specifically, the study maps the types of byproducts used, their target pollutants, removal efficiencies, and adsorption capacities. Unlike previous reviews, this work emphasizes studies that apply raw or minimally processed residues, as well as experiments conducted with real wastewater or under environmentally relevant conditions. The data are presented in a structured and comparative format, highlighting promising results and underexplored combinations. By identifying trends, gaps, and practical applications, this review contributes to advancing the development of circular economy-based, eco-friendly solutions for water pollution control and provides a valuable resource for future research and implementation.

     

  • Declaration of competing interest
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2025.07.001.
    Peer review under the responsibility of Editorial Office of Journal of Bioresources and Bioproducts.
  • loading
  • Abdelhadi, S.O., Dosoretz, C.G., Rytwo, G., Gerchman, Y., Azaizeh, H., 2017. Production of biochar from olive mill solid waste for heavy metal removal. Bioresour. Technol. 244, 759–767. doi: 10.1016/j.biortech.2017.08.013
    Abu Tayeh, H.N., Azaizeh, H., Gerchman, Y., 2020. Circular economy in olive oil production–Olive mill solid waste to ethanol and heavy metal sorbent using microwave pretreatment. Waste Manag 113, 321–328. doi: 10.1016/j.wasman.2020.06.017
    Abu-Dalo, M., Abdelnabi, J., Bawab, A.A., 2021. Preparation of activated carbon derived from Jordanian olive cake and functionalized with Cu/Cu2O/CuO for adsorption of phenolic compounds from olive mill wastewater. Materials (Basel) 14, 6636. doi: 10.3390/ma14216636
    Abu-Nada, A., Abdala, A., McKay, G., 2021. Removal of phenols and dyes from aqueous solutions using graphene and graphene composite adsorption: a review. J. Environ. Chem. Eng. 9, 105858. doi: 10.1016/j.jece.2021.105858
    Ali Ahmad, F., 2023. The use of agro-waste-based adsorbents as sustainable, renewable, and low-cost alternatives for the removal of ibuprofen and carbamazepine from water. Heliyon 9, e16449. doi: 10.1016/j.heliyon.2023.e16449
    Ahmed Alshareef, S., Abdullah Alqadami, A., Khan, M.A., Alanazi, H.S., Raza Siddiqui, M., Jeon, B.H., 2022. Simultaneous co-hydrothermal carbonization and chemical activation of food wastes to develop hydrochar for aquatic environmental remediation. Bioresour. Technol. 347, 126363. doi: 10.1016/j.biortech.2021.126363
    Akar, T., Tosun, I., Kaynak, Z., Ozkara, E., Yeni, O., Sahin, E.N., Akar, S.T., 2009. An attractive agro-industrial by-product in environmental cleanup: dye biosorption potential of untreated olive pomace. J. Hazard. Mater. 166, 1217–1225. doi: 10.1016/j.jhazmat.2008.12.029
    Akar, T., Uzunel Can, Ü.G., Celik, S., Sayin, F., Tunali Akar, S., 2022. A hybrid biocomposite of Thamnidium elegans/olive pomace/chitosan for efficient bioremoval of toxic copper. Int. J. Biol. Macromol. 221, 865–873. doi: 10.1016/j.ijbiomac.2022.08.207
    Akbas, Y.A., Yusan, S., Sert, S., Aytas, S., 2021. Sorption of Ce(Ⅲ) on magnetic/olive pomace nanocomposite: isotherm, kinetic and thermodynamic studies. Environ. Sci. Pollut. Res. Int. 28, 56782–56794. doi: 10.1007/s11356-021-14662-3
    Alardhi, S.M., Salih, H.G., Ali, N.S., Khalbas, A.H., Salih, I.K., Saady, N.M.C., Zendehboudi, S., Albayati, T.M., Harharah, H.N., 2023. Olive stone as an eco-friendly bio-adsorbent for elimination of methylene blue dye from industrial wastewater. Sci. Rep. 13, 21063. doi: 10.1038/s41598-023-47319-x
    Al-Ghouti, M.A., Dib, S.S., 2020. Utilization of nano-olive stones in environmental remediation of methylene blue from water. J. Environ. Health Sci. Eng. 18, 63–77. doi: 10.1007/s40201-019-00438-y
    Al-Sareji, O.J., Grmasha, R.A., Meiczinger, M., Al-Juboori, R.A., Somogyi, V., Stenger-Kovács, C., Hashim, K.S., 2024. A sustainable and highly efficient fossil-free carbon from olive stones for emerging contaminants removal from different water matrices. Chemosphere 351, 141189. doi: 10.1016/j.chemosphere.2024.141189
    Anastopoulos, I., Margiotoudis, I., Massas, I., 2018. The use of olive tree pruning waste compost to sequestrate methylene blue dye from aqueous solution. Int J Phytoremediation 20, 831–838. doi: 10.1080/15226514.2018.1438353
    Anastopoulos, I., Massas, I., Ehaliotis, C., 2015. Use of residues and by-products of the olive-oil production chain for the removal of pollutants from environmental media: a review of batch biosorption approaches. Journal of Environmental Science and Health, Part A 50, 677–718. doi: 10.1080/10934529.2015.1011964
    Antonopoulou, S., Demopoulos, C.A., 2023. Protective effect of olive oil microconstituents in atherosclerosis: emphasis on PAF implicated atherosclerosis theory. Biomolecules 13, 700. doi: 10.3390/biom13040700
    Arán, D., Antelo, J., Fiol, S., Macías, F., 2016. Influence of feedstock on the copper removal capacity of waste-derived biochars. Bioresour. Technol. 212, 199–206. doi: 10.1016/j.biortech.2016.04.043
    Aranda, V., Macci, C., Peruzzi, E., Masciandaro, G., 2015. Biochemical activity and chemical-structural properties of soil organic matter after 17 years of amendments with olive-mill pomace co-compost. J. Environ. Manag. 147, 278–285. doi: 10.1016/j.jenvman.2014.08.024
    Aziz, A., Elandaloussi, E.H., Belhalfaoui, B., Ouali, M.S., De Ménorval, L.C., 2009. Efficiency of succinylated-olive stone biosorbent on the removal of cadmium ions from aqueous solutions. Colloids Surf. B Biointerfaces 73, 192–198. doi: 10.1016/j.colsurfb.2009.05.017
    Aziz, K., Haydari, I., Kaya, S., Mandi, L.L., Ouazzani, N., Aziz, F., 2024. Phenolic compounds removal in table olive processing wastewater by column adsorption: conditions' optimization. Environ. Sci. Pollut. Res. Int. 31, 38835–38845.
    Ba, S., Alagui, A., Hajjaji, M., 2018. Retention and release of hexavalent and trivalent chromium by chitosan, olive stone activated carbon, and their blend. Environ. Sci. Pollut. Res. Int. 25, 19585–19604. doi: 10.1007/s11356-018-2196-7
    Baçaoui, A., Dahbi, A., Yaacoubi, A., Bennouna, C., Maldonado-Hódar, F.J., Rivera-Utrilla, J., Carrasco-Marín, F., Moreno-Castilla, C., 2002. Experimental design to optimize preparation of activated carbons for use in water treatment. Environ. Sci. Technol. 36, 3844–3849. doi: 10.1021/es010305t
    Baccar, R., Bouzid, J., Feki, M., Montiel, A., 2009. Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions. J. Hazard. Mater. 162, 1522–1529. doi: 10.1016/j.jhazmat.2008.06.041
    Banat, F., Al-Asheh, S., Al-Ahmad, R., Bni-Khalid, F., 2007. Bench-scale and packed bed sorption of methylene blue using treated olive pomace and charcoal. Bioresour. Technol. 98, 3017–3025. doi: 10.1016/j.biortech.2006.10.023
    Bhatnagar, A., Kaczala, F., Hogland, W., Marques, M., Paraskeva, C.A., Papadakis, V.G., Sillanpää, M., 2014. Valorization of solid waste products from olive oil industry as potential adsorbents for water pollution control: a review. Environ. Sci. Pollut. Res. Int. 21, 268–298. doi: 10.1007/s11356-013-2135-6
    Blázquez, G., Ronda, A., Martín-Lara, M.A., Pérez, A., Calero, M., 2015. Comparative study of isotherm parameters of lead biosorption by two wastes of olive-oil production. Water Sci. Technol. 72, 711–720. doi: 10.2166/wst.2015.153
    Boudrahem, F., Yahiaoui, I., Saidi, S., Yahiaoui, K., Kaabache, L., Zennache, M., Aissani-Benissad, F., 2019. Adsorption of pharmaceutical residues on adsorbents prepared from olive stones using mixture design of experiments model. Water Sci. Technol. 80, 998–1009. doi: 10.2166/wst.2019.346
    Bouhia, Y., Hafidi, M., Ouhdouch, Y., Lyamlouli, K., 2023. Olive mill waste sludge: from permanent pollution to a highly beneficial organic biofertilizer: a critical review and future perspectives. Ecotoxicol. Environ. Saf. 259, 114997. doi: 10.1016/j.ecoenv.2023.114997
    Capobianco, L., Di Caprio, F., Altimari, P., Astolfi, M.L., Pagnanelli, F., 2020. Production of an iron-coated adsorbent for arsenic removal by hydrothermal carbonization of olive pomace: effect of the feedwater pH. J. Environ. Manag. 273, 111164. doi: 10.1016/j.jenvman.2020.111164
    Cinardi, G., D’Urso, P.R., Arcidiacono, C., Ingrao, C., 2024. Accounting for circular economy principles in Life Cycle Assessments of extra-virgin olive oil supply chains: findings from a systematic literature review. Sci. Total Environ. 945, 173977. doi: 10.1016/j.scitotenv.2024.173977
    Dahdouh, A., Khay, I., Le Brech, Y., El Maakoul, A., Bakhouya, M., 2023. Olive oil industry: a review of waste stream composition, environmental impacts, and energy valorization paths. Environ. Sci. Pollut. Res. Int. 30, 45473–45497. doi: 10.1007/s11356-023-25867-z
    Delgado-Moreno, L., Bazhari, S., Gasco, G., Méndez, A., El Azzouzi, M., Romero, E., 2021. New insights into the efficient removal of emerging contaminants by biochars and hydrochars derived from olive oil wastes. Sci. Total Environ. 752, 141838. doi: 10.1016/j.scitotenv.2020.141838
    Di Caprio, F., Altimari, P., Astolfi, M.L., Pagnanelli, F., 2024. Optimization of two-phase synthesis of Fe-hydrochar for arsenic removal from drinking water: effect of temperature and Fe concentration. J. Environ. Manag. 351, 119834. doi: 10.1016/j.jenvman.2023.119834
    Di Caprio, F., Pellini, A., Zanoni, R., Astolfi, M.L., Altimari, P., Pagnanelli, F., 2022. Two-phase synthesis of Fe-loaded hydrochar for as removal: the distinct effects of initial pH, reaction time and Fe/hydrochar ratio. J. Environ. Manag. 302, 114058. doi: 10.1016/j.jenvman.2021.114058
    Díaz-García, A., Martínez-García, C., Cotes-Palomino, T., 2017. Properties of residue from olive oil extraction as a raw material for sustainable construction materials. part I: physical properties. Materials (Basel) 10, 100. doi: 10.3390/ma10020100
    El Ouahedy, N., Zbair, M., Ojala, S., Brahmi, R., Pirault-Roy, L., 2020. Porous carbon materials derived from olive kernels: application in adsorption of organic pollutants. Environ. Sci. Pollut. Res. Int. 27, 29967–29982. doi: 10.1007/s11356-020-09268-0
    Elboughdiri, N., Ferkous, H., Rouibah, K., Boublia, A., Delimi, A., Yadav, K.K., Erto, A., Ghernaout, D., Salih, A.A.M., Benaissa, M., Benguerba, Y., 2024. Comprehensive investigation of Cu2+ adsorption from wastewater using olive-waste-derived adsorbents: experimental and molecular insights. Int. J. Mol. Sci. 25, 1028. doi: 10.3390/ijms25021028
    Ellen MacArthur Foundation. Growth within: A circular economy vision for a competitive Europe Available at.
    Ellen MacArthur Foundation. Towards the circular economy: Business rationale for an accelerated transition Available at.
    Enaime, G., Dababat, S., Wichern, M., Lübken, M., 2024. Olive mill wastes: from wastes to resources. Environ. Sci. Pollut. Res. Int. 31, 20853–20880. doi: 10.1007/s11356-024-32468-x
    Eroglu, H., Yapici, S., Nuhoglu, C., Varoglu, E., 2009. Biosorption of Ga-67 radionuclides from aqueous solutions onto waste pomace of an olive oil factory. J. Hazard. Mater. 172, 729–738. doi: 10.1016/j.jhazmat.2009.07.054
    Erses Yay, A.S., Oral, H.V., Onay, T.T., Yenigün, O., 2012. A study on olive oil mill wastewater management in Turkey: a questionnaire and experimental approach. Resour. Conserv. Recycl. 60, 64–71. doi: 10.1016/j.resconrec.2011.11.009
    Escudero-Curiel, S., Pazos, M., Sanromán, A., 2023. Facile one-step synthesis of a versatile nitrogen-doped hydrochar from olive oil production waste, “alperujo”, for removing pharmaceuticals from wastewater. Environ. Pollut. 330, 121751. doi: 10.1016/j.envpol.2023.121751
    Esteves, B.M., Morales-Torres, S., Madeira, L.M., Maldonado-Hódar, F.J., 2022. Specific adsorbents for the treatment of OMW phenolic compounds by activation of bio-residues from the olive oil industry. J. Environ. Manag. 306, 114490. doi: 10.1016/j.jenvman.2022.114490
    European Commission, 2021. EU soil strategy for 2030: Reaping the benefits of healthy soils for people, food, nature and climate. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions Available at. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52021DC0699.
    European Commission, 2020. A new circular economy action plan for a cleaner and more competitive Europe. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions Available at. https://eur-lex.europa.eu/resource.html?uri=cellar:9903b325-6388-11ea-b735-01aa75ed71a1.0017.02/DOC_1&format=PDF.
    European Commission. The European green deal. Communication from the commission Available at.
    Falagas, M.E., Pitsouni, E.I., Malietzis, G.A., Pappas, G., 2008. Comparison of PubMed, Scopus, web of science, and google scholar: strengths and weaknesses. FASEB J. 22, 338–342. doi: 10.1096/fj.07-9492lsf
    Ferkous, H., Rouibah, K., Hammoudi, N.E.H., Alam, M., Djilani, C., Delimi, A., Laraba, O., Yadav, K.K., Ahn, H.J., Jeon, B.H., Benguerba, Y., 2022. The removal of a textile dye from an aqueous solution using a biocomposite adsorbent. Polymers (Basel) 14, 2396. doi: 10.3390/polym14122396
    Fernández-González, R., Martín-Lara, M.A., Iáñez-Rodríguez, I., Calero, M., 2018. Removal of heavy metals from acid mining effluents by hydrolyzed olive cake. Bioresour. Technol. 268, 169–175. doi: 10.1016/j.biortech.2018.07.124
    Flores-Céspedes, F., Villafranca-Sánchez, M., Fernández-Pérez, M., 2020. Alginate-based hydrogels modified with olive pomace and lignin to removal organic pollutants from aqueous solutions. Int. J. Biol. Macromol. 153, 883–891. doi: 10.1016/j.ijbiomac.2020.03.081
    Francesca, P., Sara, M., Luigi, T., 2008. New biosorbent materials for heavy metal removal: product development guided by active site characterization. Water Res 42, 2953–2962. doi: 10.1016/j.watres.2008.03.012
    Galiatsatou, P., Metaxas, M., Arapoglou, D., Kasselouri-Rigopoulou, V., 2002. Treatment of olive mill waste water with activated carbons from agricultural by-products. Waste Manag 22, 803–812. doi: 10.1016/S0956-053X(02)00055-7
    González-Rámila, S., Sarriá, B., Seguido, M.A., García-Cordero, J., Mateos, R., Bravo, L., 2023. Olive pomace oil can improve blood lipid profile: a randomized, blind, crossover, controlled clinical trial in healthy and at-risk volunteers. Eur. J. Nutr. 62, 589–603.
    Hamadneh, I., Abu-Zurayk, R.A., Al-Dujaili, A.H., 2020. Removal of phenolic compounds from aqueous solution using MgCl2-impregnated activated carbons derived from olive husk: the effect of chemical structures. Water Sci. Technol. 81, 2351–2367.
    Hamed, O., Lail, B.A., Deghles, A., Qasem, B., Azzaoui, K., Obied, A.A., Algarra, M., Jodeh, S., 2019. Synthesis of a cross-linked cellulose-based amine polymer and its application in wastewater purification. Environ. Sci. Pollut. Res. Int. 26, 28080–28091. doi: 10.1007/s11356-019-06001-4
    Hamieh, M., Tabaja, N., Tlais, S., Koubaissy, B., Hammoud, M., Chawraba, K., Hamieh, T., Toufaily, J., 2024. Development of a novel adsorbent derived from olive mill solid wastes for enhanced removal of methylene blue. Materials (Basel) 17, 4326. doi: 10.3390/ma17174326
    Hanandeh, A.E., Abu-Zurayk, R.A., Hamadneh, I., Al-Dujaili, A.H., 2016. Characterization of biochar prepared from slow pyrolysis of Jordanian olive oil processing solid waste and adsorption efficiency of Hg2+ ions in aqueous solutions. Water Sci. Technol. 74, 1899–1910. doi: 10.2166/wst.2016.378
    Hansen, H.K., Arancibia, F., Gutiérrez, C., 2010. Adsorption of copper onto agriculture waste materials. J. Hazard. Mater. 180, 442–448. doi: 10.1016/j.jhazmat.2010.04.050
    Hawari, A., Rawajfih, Z., Nsour, N., 2009. Equilibrium and thermodynamic analysis of zinc ions adsorption by olive oil mill solid residues. J. Hazard. Mater. 168, 1284–1289. doi: 10.1016/j.jhazmat.2009.03.014
    Haydari, I., Lissaneddine, A., Aziz, K., Ouazzani, N., Mandi, L.L., El Ghadraoui, A., Aziz, F., 2022. Optimization of preparation conditions of a novel low-cost natural bio-sorbent from olive pomace and column adsorption processes on the removal of phenolic compounds from olive oil mill wastewater. Environ. Sci. Pollut. Res. Int. 29, 80044–80061. doi: 10.1007/s11356-022-20577-4
    Hung, Y.T., Salman, H., Awad, A., 2005. Olive oil waste treatment. Waste treatment in the food processing industry. CRC Press, Boca Raton, pp. 119–192.
    Jawad, A.H., Abdulhameed, A.S., Hanafiah, M.A.K.M., ALOthman, Z.A., Khan, M.R., Surip, S.N., 2021. Numerical desirability function for adsorption of methylene blue dye by sulfonated pomegranate peel biochar: modeling, kinetic, isotherm, thermodynamic, and mechanism study. Korean J. Chem. Eng. 38, 1499–1509. doi: 10.1007/s11814-021-0801-9
    Jodeh S., Hamed O., Melhem A., Salghi R., Jodeh D., Azzaoui K., Benmassaoud Y., Murtada K., 2018. Magnetic nanocellulose from olive industry solid waste for the effective removal of methylene blue from wastewater. Environ Sci Pollut Res Int 25, 22060–22074. doi: 10.1007/s11356-018-2107-y
    Khiari B., Wakkel M., Abdelmoumen S., Jeguirim M., 2019. Dynamics and kinetics of cupric ion removal from wastewaters by Tunisian solid crude olive-oil waste. Mater. Basel 12, E365.
    Lagoa, R., Rodrigues, J.R., 2009. Kinetic analysis of metal uptake by dry and gel alginate particles. Biochem. Eng. J. 46, 320–326. doi: 10.1016/j.bej.2009.06.007
    Lissaneddine, A., Mandi, L., El Achaby, M., Mousset, E., Rene, E.R., Ouazzani, N., Pons, M.N., Aziz, F., 2021. Performance and dynamic modeling of a continuously operated pomace olive packed bed for olive mill wastewater treatment and phenol recovery. Chemosphere 280, 130797. doi: 10.1016/j.chemosphere.2021.130797
    Madureira, J., Margaça, F.M.A., Santos-Buelga, C., Ferreira, I.C.F.R., Verde, S.C., Barros, L., 2022. Applications of bioactive compounds extracted from olive industry wastes: a review. Compr. Rev. Food Sci. Food Saf. 21, 453–476. doi: 10.1111/1541-4337.12861
    Malkoc, E., Nuhoglu, Y., Dundar, M., 2006. Adsorption of chromium(Ⅵ) on pomace: an olive oil industry waste: batch and column studies. J. Hazard. Mater. 138, 142–151. doi: 10.1016/j.jhazmat.2006.05.051
    Martín-Lara, M.A., Pagnanelli, F., Mainelli, S., Calero, M., Toro, L., 2008. Chemical treatment of olive pomace: effect on acid-basic properties and metal biosorption capacity. J. Hazard. Mater. 156, 448–457. doi: 10.1016/j.jhazmat.2007.12.035
    Mechnou, I., Meskini, S., El Ayar, D., Lebrun, L., Hlaibi, M., 2022. Olive mill wastewater from a liquid biological waste to a carbon/oxocalcium composite for selective and efficient removal of methylene blue and paracetamol from aqueous solution. Bioresour. Technol. 365, 128162. doi: 10.1016/j.biortech.2022.128162
    Mechnou, I., Meskini, S., Raji, Y., Kouar, J., Hlaibi, M., 2023. Development of a novel in situ aluminum/carbon composite from olive mill wastewater for the selective adsorption and separation of malachite green and acid yellow 61. Bioresour. Technol. 384, 129272. doi: 10.1016/j.biortech.2023.129272
    Mohamed Abdoul-Latif, F., Ainane, A., Hachi, T., Abbi, R., Achira, M., Abourriche, A., Brulé, M., Ainane, T., 2023. Materials derived from olive pomace as effective bioadsorbents for the process of removing total phenols from oil mill effluents. Molecules 28, 4310. doi: 10.3390/molecules28114310
    Morin-Crini, N., Lichtfouse, E., Fourmentin, M., Ribeiro, A.R.L., Noutsopoulos, C., Mapelli, F., Fenyvesi, É., Vieira, M.G.A., Picos-Corrales, L.A., Moreno-Piraján, J.C., Giraldo, L., Sohajda, T., Huq, M.M., Soltan, J., Torri, G., Magureanu, M., Bradu, C., Crini, G., 2022. Removal of emerging contaminants from wastewater using advanced treatments. A review. Environ. Chem. Lett. 20, 1333–1375. doi: 10.1007/s10311-021-01379-5
    Ndoun, M.C., Knopf, A., Preisendanz, H.E., Vozenilek, N., Elliott, H.A., Mashtare, M.L., Velegol, S., Veith, T.L., Williams, C.F., 2023. Fixed bed column experiments using cotton gin waste and walnut shells-derived biochar as low-cost solutions to removing pharmaceuticals from aqueous solutions. Chemosphere 330, 138591. doi: 10.1016/j.chemosphere.2023.138591
    Nuhoglu, Y., Malkoc, E., 2009. Thermodynamic and kinetic studies for environmentaly friendly Ni(Ⅱ) biosorption using waste pomace of olive oil factory. Bioresour. Technol. 100, 2375–2380. doi: 10.1016/j.biortech.2008.11.016
    Oladoye, P.O., Ajiboye, T.O., Omotola, E.O., Oyewola, O.J., 2022. Methylene blue dye: toxicity and potential elimination technology from wastewater. Results Eng 16, 100678. doi: 10.1016/j.rineng.2022.100678
    Olive Oil Times. Global Olive Oil Production Predicted to Rebound Available at.
    Ozcan, D.O., Hendekci, M.C., Ovez, B., 2024. Enhancing the adsorption capacity of organic and inorganic pollutants onto impregnated olive stone derived activated carbon. Heliyon 10, e32792. doi: 10.1016/j.heliyon.2024.e32792
    Pagnanelli, F., Mainelli, S., De Angelis, S., Toro, L., 2005. Biosorption of protons and heavy metals onto olive pomace: modelling of competition effects. Water Res 39, 1639–1651. doi: 10.1016/j.watres.2005.01.019
    Pagnanelli, F., Toro, L., Vegliò, F., 2002. Olive mill solid residues as heavy metal sorbent material: a preliminary study. Waste Manag 22, 901–907. doi: 10.1016/S0956-053X(02)00086-7
    Pellera, F.M., Giannis, A., Kalderis, D., Anastasiadou, K., Stegmann, R., Wang, J.Y., Gidarakos, E., 2012. Adsorption of Cu(Ⅱ) ions from aqueous solutions on biochars prepared from agricultural by-products. J. Environ. Manag. 96, 35–42. doi: 10.1016/j.jenvman.2011.10.010
    Pereira, L., Castillo, V., Calero, M., González-Egido, S., Martín-Lara, M.Á., Solís, R.R., 2024. Promoting the circular economy: valorization of a residue from industrial char to activated carbon with potential environmental applications as adsorbents. J. Environ. Manag. 356, 120753. doi: 10.1016/j.jenvman.2024.120753
    Quirantes, M., Nogales, R., Romero, E., 2017. Sorption potential of different biomass fly ashes for the removal of diuron and 3, 4-dichloroaniline from water. J. Hazard. Mater. 331, 300–308. doi: 10.1016/j.jhazmat.2017.02.047
    Rathi, B.S., Kumar, P.S., Show, P.L., 2021. A review on effective removal of emerging contaminants from aquatic systems: current trends and scope for further research. J. Hazard. Mater. 409, 124413. doi: 10.1016/j.jhazmat.2020.124413
    Raupp, Í.N., Valério Filho, A., Arim, A.L., Muniz, A.R.C., da Rosa, G.S., 2021. Development and characterization of activated carbon from olive pomace: experimental design, kinetic and equilibrium studies in nimesulide adsorption. Materials (Basel) 14, 6820. doi: 10.3390/ma14226820
    Riolo, R., De Rosa, R., Simonetta, I., Tuttolomondo, A., 2022. Olive oil in the Mediterranean diet and its biochemical and molecular effects on cardiovascular health through an analysis of genetics and epigenetics. Int. J. Mol. Sci. 23, 16002. doi: 10.3390/ijms232416002
    Rizzi, V., Lacalamita, D., Gubitosa, J., Fini, P., Petrella, A., Romita, R., Agostiano, A., Gabaldón, J.A., Fortea Gorbe, M.I., Gómez-Morte, T., Cosma, P., 2019. Removal of tetracycline from polluted water by chitosan-olive pomace adsorbing films. Sci. Total Environ. 693, 133620. doi: 10.1016/j.scitotenv.2019.133620
    Samal, K., Mahapatra, S., Hibzur Ali, M., 2022. Pharmaceutical wastewater as emerging contaminants (EC): Treatment technologies, impact on environment and human health. Energy Nexus 6, 100076. doi: 10.1016/j.nexus.2022.100076
    Saravanan, A., Senthil Kumar, P., Jeevanantham, S., Karishma, S., Tajsabreen, B., Yaashikaa, P.R., Reshma, B., 2021. Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. Chemosphere 280, 130595. doi: 10.1016/j.chemosphere.2021.130595
    Sayin, F., Tunali Akar, S., Akar, T., Celik, S., Gedikbey, T., 2021. Chitosan immobilization and Fe3O4 functionalization of olive pomace: An eco-friendly and recyclable Pb2+ biosorbent. Carbohydr. Polym. 269, 118266. doi: 10.1016/j.carbpol.2021.118266
    Selim, S., Albqmi, M., Al-Sanea, M.M., Alnusaire, T.S., Almuhayawi, M.S., AbdElgawad, H., Al Jaouni, S.K., Elkelish, A., Hussein, S., Warrad, M., El-Saadony, M.T., 2022. Valorizing the usage of olive leaves, bioactive compounds, biological activities, and food applications: a comprehensive review. Front. Nutr. 9, 1008349. doi: 10.3389/fnut.2022.1008349
    Sepúlveda, P., Pavez, O., Tume, P., Sepúlveda, B., 2023. Biosorption of copper ions with olive pomace and walnut shell. Environ. Geochem. Health 45, 5713–5726. doi: 10.1007/s10653-022-01303-y
    Shabir, S., Ilyas, N., Saeed, M., Bibi, F., Sayyed, R.Z., Almalki, W.H., 2023. Treatment technologies for olive mill wastewater with impacts on plants. Environ. Res. 216, 114399. doi: 10.1016/j.envres.2022.114399
    Sodhi, K.K., Mishra, L.C., Singh, C.K., Kumar, M., 2022. Perspective on the heavy metal pollution and recent remediation strategies. Curr. Res. Microb. Sci. 3, 100166.
    Solomakou, N., Goula, A.M., 2021. Treatment of olive mill wastewater by adsorption of phenolic compounds. Rev. Environ. Sci. Bio/Technol. 20, 839–863. doi: 10.1007/s11157-021-09585-x
    Sridhar, A., Ponnuchamy, M., Kapoor, A., Prabhakar, S., 2022. Valorization of food waste as adsorbents for toxic dye removal from contaminated waters: a review. J. Hazard. Mater. 424, 127432. doi: 10.1016/j.jhazmat.2021.127432
    Stasinakis, A.S., Elia, I., Petalas, A.V., Halvadakis, C.P., 2008. Removal of total phenols from olive-mill wastewater using an agricultural by-product, olive pomace. J. Hazard. Mater. 160, 408–413. doi: 10.1016/j.jhazmat.2008.03.012
    Sundararaman, S., Aravind Kumar, J., Deivasigamani, P., Devarajan, Y., 2022. Emerging pharma residue contaminants: occurrence, monitoring, risk and fate assessment: a challenge to water resource management. Sci. Total Environ. 825, 153897. doi: 10.1016/j.scitotenv.2022.153897
    Tayibi, S., Monlau, F., Fayoud, N.E., Abdeljaoued, E., Hannache, H., Zeroual, Y., Oukarroum, A., Barakat, A., 2020. Production and dry mechanochemical activation of biochars derived from Moroccan red macroalgae residue and olive pomace biomass for treating wastewater: thermodynamic, isotherm, and kinetic studies. ACS Omega 6, 159–171.
    Tokula, B.E., Dada, A.O., Inyinbor, A.A., Obayomi, K.S., Bello, O.S., Pal, U., 2023. Agro-waste based adsorbents as sustainable materials for effective adsorption of Bisphenol A from the environment: a review. J. Clean. Prod. 388, 135819. doi: 10.1016/j.jclepro.2022.135819
    Vagnoni, G., Bortolotti, E., Checchi, S., Saieva, C., Berti, G., Doccioli, C., Caini, S., 2024. Lead (Pb) in biological samples in association with cancer risk and mortality: a systematic literature review. Cancer Epidemiol 92, 102630. doi: 10.1016/j.canep.2024.102630
    Vardakas, K.Z., Tsopanakis, G., Poulopoulou, A., Falagas, M.E., 2015. An analysis of factors contributing to PubMed’s growth. J. Informetr. 9, 592–617. doi: 10.1016/j.joi.2015.06.001
    Vegliò, F., Beolchini, F., Prisciandaro, M., 2003. Sorption of copper by olive mill residues. Water Res 37, 4895–4903. doi: 10.1016/S0043-1354(03)00414-7
    Wang, F., Xiang, L.L., Sze-Yin Leung, K., Elsner, M., Zhang, Y., Guo, Y.M., Pan, B., Sun, H.W., An, T.C., Ying, G.G., Brooks, B.W., Hou, D.Y., Helbling, D.E., Sun, J.Q., Qiu, H., Vogel, T.M., Zhang, W., Gao, Y.Z., Simpson, M.J., Luo, Y., Chang, S.X., Su, G.Y., Wong, B.M., Fu, T.M., Zhu, D., Jobst, K.J., Ge, C.J., Coulon, F., Harindintwali, J.D., Zeng, X.K., Wang, H.J., Fu, Y.H., Wei, Z., Lohmann, R., Chen, C.E., Song, Y., Sanchez-Cid, C., Wang, Y., El-Naggar, A., Yao, Y.M., Huang, Y.R., Cheuk-Fung Law, J., Gu, C.G., Shen, H.Z., Gao, Y.P., Qin, C., Li, H., Zhang, T., Corcoll, N., Liu, M., Alessi, D.S., Li, H., Brandt, K.K., Pico, Y., Gu, C., Guo, J.H., Su, J.Q., Corvini, P., Ye, M., Rocha-Santos, T., He, H., Yang, Y., Tong, M.P., Zhang, W.N., Suanon, F., Brahushi, F., Wang, Z.Y., Hashsham, S.A., Virta, M., Yuan, Q.B., Jiang, G.F., Tremblay, L.A., Bu, Q.W., Wu, J.C., Peijnenburg, W., Topp, E., Cao, X.D., Jiang, X., Zheng, M.H., Zhang, T.L., Luo, Y.M., Zhu, L.Z., Li, X.D., Barceló, D., Chen, J.M., Xing, B.S., Amelung, W., Cai, Z.W., Naidu, R., Shen, Q.R., Pawliszyn, J., Zhu, Y.G., Schaeffer, A., Rillig, M.C., Wu, F.C., Yu, G., Tiedje, J.M., 2024. Emerging contaminants: a one health perspective. The Innovation 5, 100612.
    Wang, M.M., Lv, Y.Y., Lv, X.Y., Wang, Q.H., Li, Y.Y., Lu, P., Yu, H., Wei, P.K., Cao, Z.G., An, T.C., 2023. Distribution, sources and health risks of heavy metals in indoor dust across China. Chemosphere 313, 137595. doi: 10.1016/j.chemosphere.2022.137595
    Wang, W.B., Wang, A.Q., 2022. Perspectives on green fabrication and sustainable utilization of adsorption materials for wastewater treatment. Chem. Eng. Res. Des. 187, 541–548. doi: 10.1016/j.cherd.2022.09.006
    Weidemann E., Niinipuu M., Fick J., Jansson S., 2018. Using carbonized low-cost materials for removal of chemicals of environmental concern from water. Environ. Sci. Pollut. Res. Int. 25, 15793–15801. doi: 10.1007/s11356-018-1781-0
    World Population Review. Olive oil production by country 2024 Available at Accessed October 12. 2024.
    Xing, T., Wu, Y.J., Wang, Q.L., Sadrnia, A., Behmaneshfar, A., Dragoi, E.N., 2023. Adsorption of ibuprofen using waste coffee derived carbon architecture: experimental, kinetic modeling, statistical and bio-inspired optimization. Environ. Res. 231, 116223. doi: 10.1016/j.envres.2023.116223
    Yardımcı, B., Kanmaz, N., 2023. An effective-green strategy of methylene blue adsorption: sustainable and low-cost waste cinnamon bark biomass enhanced via MnO2. J. Environ. Chem. Eng. 11, 110254. doi: 10.1016/j.jece.2023.110254
    Zahi, M.R., Zam, W., El Hattab, M., 2022. State of knowledge on chemical, biological and nutritional properties of olive mill wastewater. Food Chem 381, 132238. doi: 10.1016/j.foodchem.2022.132238
    Zyoud, A., Nassar, H.N.I., El-Hamouz, A., Hilal, H.S., 2015. Solid olive waste in environmental cleanup: enhanced nitrite ion removal by ZnCl2-activated carbon. J. Environ. Manag. 152, 27–35. doi: 10.1016/j.jenvman.2015.01.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article views (23) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return