| Citation: | Wenxiang Zhai, Yijing Zhong, Wei Zhang, Zechun Ren, Tong Ji, Kejiao Ding, Song Chen, Xinli Wei, Liping Cai, Changlei Xia, Min Xu. Biofunctional cellulose fibers from mulberry bast via suberin nanointerface engineering[J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 589-600. doi: 10.1016/j.jobab.2025.07.002 |
|
Allwood, J.M., Laursen, S.E., de Rodriguez, C.M., Bocken, N.M.P., 2015. Well dressed: the present and future sustainability of clothing and textiles in the United Kingdom. J. Home Econom. Instit. Australia 22, 42.
|
|
Correia, V.G., Bento, A., Pais, J., Rodrigues, R., Haliński, Ł.P., Frydrych, M., Greenhalgh, A., Stepnowski, P., Vollrath, F., King, A.W.T., Silva Pereira, C., 2020. The molecular structure and multifunctionality of the cryptic plant polymer suberin. Mater. Today Bio 5, 100039. doi: 10.1016/j.mtbio.2019.100039
|
|
Garcia, H., Ferreira, R., Martins, C., Sousa, A.F., Freire, C.S.R., Silvestre, A.J.D., Kunz, W., Rebelo, L.P.N., Pereira, C.S., 2014. Ex situ reconstitution of the plant biopolyester suberin as a film. Biomacromol. 15, 1806–1813. doi: 10.1021/bm500201s
|
|
Gonçalves, F., Correia, P., Silva, S.P., Almeida-Aguiar, C., 2015. Evaluation of antimicrobial properties of cork. FEMS Microbiol. Lett. 363, fnv231.
|
|
Handiso, B., Valle-Delgado, J.J., Johansson, L.S., Hughes, M., 2021. The physicochemical properties of cellulose surfaces modified with (depolymerised) suberin and suberin fatty acid. Ind. Crops Prod. 159, 113070. doi: 10.1016/j.indcrop.2020.113070
|
|
Hu, L.Q., Koppolu, R., Hämäläinen, R., Kanerva, H., Nick, T., Toivakka, M., Korpinen, R., Saranpää, P., Qasim, U., Liimatainen, H., Xu, C.L., Anghelescu-Hakala, A., 2024. Suberin-based aqueous dispersions for barrier packaging applications. ACS Sustainable Chem. Eng. 12, 8902–8912. doi: 10.1021/acssuschemeng.4c02244
|
|
Huang, T.X., Chen, C., Li, D.F., Ek, M., 2019. Hydrophobic and antibacterial textile fibres prepared by covalently attaching betulin to cellulose. Cell. 26, 665–677. doi: 10.1007/s10570-019-02265-8
|
|
Huang, T.X., Li, D.F., Ek, M., 2018. Water repellency improvement of cellulosic textile fibers by betulin and a betulin-based copolymer. Cell. 25, 2115–2128. doi: 10.1007/s10570-018-1695-5
|
|
Korpinen, R.I., Kilpeläinen, P., Sarjala, T., Nurmi, M., Saloranta, P., Holmbom, T., Koivula, H., Mikkonen, K.S., Willför, S., Saranpää, P.T., 2019. The hydrophobicity of lignocellulosic fiber network can be enhanced with suberin fatty acids. Mol. 24, 4391. doi: 10.3390/molecules24234391
|
|
Lenzing, A., 2018. The global fiber market in 2016. Available at:
|
|
Li, D.F., Iversen, T., Ek, M., 2015. Hydrophobic materials based on cotton linter cellulose and an epoxy-activated polyester derived from a suberin monomer. Holzforsch. 69, 721–730. doi: 10.1515/hf-2014-0261
|
|
Li, J.G., Chen, C.J., Chen, Q.Y., Li, Z.H., Xiao, S.L., Gao, J.L., He, S.M., Lin, Z.W., Tang, H., Li, T., Hu, L.B., 2024. Kilogram-scale production of strong and smart cellulosic fibers featuring unidirectional fibril alignment. Natl. Sci. Rev. 11, nwae270. doi: 10.1093/nsr/nwae270
|
|
Li, Z.H., Chen, C.J., Xie, H., Yao, Y., Zhang, X., Brozena, A., Li, J.G., Ding, Y., Zhao, X.P., Hong, M., Qiao, H.Y., Smith, L.M., Pan, X.J., Briber, R., Shi, S.Q., Hu, L.B., 2021. Sustainable high-strength macrofibres extracted from natural bamboo. Nat. Sustain. 5, 235–244. doi: 10.1038/s41893-021-00831-2
|
|
Moriam, K., Azevedo, C., Fateixa, S., Bernardo, F., Sixta, H., Evtuguin, D.V., 2024. Modification of regenerated cellulose fibres by cork-derived suberin and the cutin fraction from grape skins. Carbohydr. Polym. Technol. Appl. 8, 100613.
|
|
Qasim, U., Sirviö, J.A., Suopajärvi, T., Hu, L.Q., Pratiwi, F.W., Lin, M.K.T.H., Anghelescu-Hakala, A., Ronkainen, V.P., Xu, C.L., Liimatainen, H., 2024. A multifunctional biogenic films and coatings from synergistic aqueous dispersion of wood-derived suberin and cellulose nanofibers. Carbohydr. Polym. 338, 122218. doi: 10.1016/j.carbpol.2024.122218
|
|
Roos, S., Posner, S., Jönsson, C., Peters, G.M., 2015. Is unbleached cotton better than bleached exploring the limits of life-cycle assessment in the textile sector. Cloth. Text. Res. J. 33, 231–247. doi: 10.1177/0887302X15576404
|
|
Shen, L., Worrell, E., Patel, M.K., 2010. Environmental impact assessment of man-made cellulose fibres. Resour. Conserv. Recycl. 55, 260–274. doi: 10.1016/j.resconrec.2010.10.001
|
|
Sun, J.R., Li, Y., Sun, K.Y., Zhang, L., Feng, X.C., Song, X.Z., 2024. Investigating the physical characteristics and antibacterial properties of the cork back from Quercus variabilis. Ind. Crops Prod. 222, 119792. doi: 10.1016/j.indcrop.2024.119792
|
|
Yadav, P., Korpinen, R., Räty, T., Korkalo, P., Räsänen, K., Tienaho, J., Saranpää, P., 2024. Life cycle assessment of suberin and betulin production from birch bark. J. Clean. Prod. 474, 143570. doi: 10.1016/j.jclepro.2024.143570
|
|
Zhai, W.X., Xu, M., Zhong, Y.J., Zhang, K., Li, J.M., Ding, K.J., Wei, X.L., Cai, L.P., Xia, C.L., 2023. Permanently mechanically adjustable photothermal catalytic spontaneous double cross-linking network enables durable and stretchable plant skin-like materials. Adv. Funct. Mater. 33, 2305198. doi: 10.1002/adfm.202305198
|
|
Zhai, W.X., Zhong, Y.J., Zhang, W., Ren, Z.C., Ding, K.J., Chen, S., Wei, X.L., Xu, M., Cai, L.P., Xia, C.L., 2025. Compressible and dehydratable all-wood hydrospongel from low-value wood for sustainable water harvesting. Chem. Eng. J. 512, 162458. doi: 10.1016/j.cej.2025.162458
|
|
Zhang, Z.G., Huang, J., Yao, Y., Peters, G., MacDonald, B., La Rosa, A.D., Wang, Z.B., Scherer, L., 2023. Environmental impacts of cotton and opportunities for improvement. Nat. Rev. Earth Environ. 4, 703–715. doi: 10.1038/s43017-023-00476-z
|