| Citation: | Jiawei Yang, Qingyuan Li, Shengchang Lu, Hui Wu, Liulian Huang, Lihui Chen, Jianguo Li. Catalyst-free engineered robust cellulose ionogel for high-performance ionotronic devices[J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 601-615. doi: 10.1016/j.jobab.2025.08.001 |
|
Angell, C.A., Byrne, N., Belieres, J.P., 2007. Parallel developments in aprotic and protic ionic liquids: physical chemistry and applications. Acc. Chem. Res. 40, 1228–1236. doi: 10.1021/ar7001842
|
|
Bai, M.T., Yang, Y., Zhang, L., Huo, H.F., Zhang, J.J., Wang, Z.F., Zhang, Z.F., 2025. Preparation of energy-efficient, environmentally friendly and high-strength biocomposites from wood fibre ultramicro self-composite cellulose matrices. Compos. Part B Eng. 291, 112047. doi: 10.1016/j.compositesb.2024.112047
|
|
Bernhard, S., Ritter, L., Müller, M., Guo, W.Q., Guzzi, E.A., Bovone, G., Tibbitt, M.W., 2024. Modular and photoreversible polymer–nanoparticle hydrogels via host–guest interactions. Small 20, 2401870. doi: 10.1002/smll.202401870
|
|
Cao, K.Y., Zhu, Y., Zheng, Z.H., Cheng, W.K., Zi, Y.F., Zeng, S.Q., Zhao, D.W., Yu, H.P., 2023. Bio-inspired multiscale design for strong and tough biological ionogels. Adv. Sci. 10, 2207233. doi: 10.1002/advs.202207233
|
|
Chen, Q.F., Cheng, B.B., Wang, Z.Q., Sun, X.H., Liu, Y., Sun, H.D., Li, J.W., Chen, L.H., Zhu, X.H., Huang, L.L., Ni, Y.H., An, M., Li, J.G., 2023. Rarely negative-thermovoltage cellulose ionogel with simultaneously boosted mechanical strength and ionic conductivity via ion-molecular engineering. J. Mater. Chem. A 11, 2145–2154. doi: 10.1039/d2ta09068f
|
|
Chen, Q.F., Liu, Y., Yang, J.W., Rehman, M.H.U., Zhang, H.J., Chen, L.H., Li, J.G., 2024. Cellulose ionogels: recent advancement in material, design, performance and applications. Resour. Chem. Mater. 4, 100088. doi: 10.59717/j.xinn-geo.2024.100088
|
|
Chen, S.Q., Meldrum, O.W., Liao, Q.D., Li, Z.F., Cao, X., Guo, L., Zhang, S.Y., Zhu, J., Li, L., 2021. The influence of alkaline treatment on the mechanical and structural properties of bacterial cellulose. Carbohydr. Polym. 271, 118431. doi: 10.1016/j.carbpol.2021.118431
|
|
Cheng, Y., Zhu, H.N., Li, S.J., Xu, M., Li, T.C., Yang, X.M., Song, H.Z., 2023. Stretchable, low-hysteresis, and recyclable ionogel by ionic liquid catalyst and mixed ionic liquid-induced phase separation. ACS Sustainable Chem. Eng. 11, 15031–15042. doi: 10.1021/acssuschemeng.3c03791
|
|
Chizallet, C., Bouchy, C., Larmier, K., Pirngruber, G., 2023. Molecular views on mechanisms of Brønsted acid-catalyzed reactions in zeolites. Chem. Rev. 123, 6107–6196. doi: 10.1021/acs.chemrev.2c00896
|
|
Choi, H.W., Shin, D.W., Yang, J.J., Lee, S., Figueiredo, C., Sinopoli, S., Ullrich, K., Jovančić, P., Marrani, A., Momentè, R., Gomes, J., Branquinho, R., Emanuele, U., Lee, H., Bang, S.Y., Jung, S.M., Han, S.D., Zhan, S.J., Harden-Chaters, W., Suh, Y.H., Fan, X.-B., Lee, T.H., Chowdhury, M., Choi, Y., Nicotera, S., Torchia, A., Moncunill, F.M., Candel, V.G., Durães, N., Chang, K., Cho, S., Kim, C.H., Lucassen, M., Nejim, A., Jiménez, D., Springer, M., Lee, Y.W., Cha, S., Sohn, J.I., Igreja, R., Song, K., Barquinha, P., Martins, R., Amaratunga, G.A.J., Occhipinti, L.G., Chhowalla, M., Kim, J.M., 2022. Smart textile lighting/display system with multifunctional fibre devices for large scale smart home and IoT applications. Nat. Commun. 13, 814. doi: 10.1038/s41467-022-28459-6
|
|
Cui, J.J., Liu, F.K., Lu, Z., Feng, S.W., Liang, C., Sun, Y.D., Cui, J., Zhang, B., 2023. Repeatedly recyclable 3D printing catalyst-free dynamic thermosetting photopolymers. Adv. Mater. 35, 2211417. doi: 10.1002/adma.202211417
|
|
Dias, O.A.T., Konar, S., Pakharenko, V., Graziano, A., Leão, A.L., Tjong, J., Jaffer, S., Sain, M., 2021. Regioselective protection and deprotection of nanocellulose molecular design architecture: robust platform for multifunctional applications. Biomacromolecules 22, 4980–4987. doi: 10.1021/acs.biomac.1c00909
|
|
Eyckens, D.J., Demir, B., Walsh, T.R., Welton, T., Henderson, L.C., 2016. Determination of Kamlet–Taft parameters for selected solvate ionic liquids. Phys. Chem. Chem. Phys. 18, 13153–13157. doi: 10.1039/C6CP01216G
|
|
Gong, K., Hou, L., Wu, P.Y., 2022. Hydrogen-bonding affords sustainable plastics with ultrahigh robustness and water-assisted arbitrarily shape engineering. Adv. Mater. 34, 2201065. doi: 10.1002/adma.202201065
|
|
Guo, S.F., Zhao, K., Feng, Z.Q., Hou, Y.D., Li, H., Zhao, J., Tian, Y.L., Song, H.Z., 2018. High performance liquid crystalline bionanocomposite ionogels prepared by in situ crosslinking of cellulose/halloysite nanotubes/ionic liquid dispersions and its application in supercapacitors. Appl. Surf. Sci. 455, 599–607. doi: 10.1016/j.apsusc.2018.06.026
|
|
Guyomard-Lack, A., Buchtová, N., Humbert, B., Le Bideau, J., 2015. Ion segregation in an ionic liquid confined within chitosan based chemical ionogels. Phys. Chem. Chem. Phys. 17, 23947–23951. doi: 10.1039/C5CP04198H
|
|
Han, S.W., Hu, Y.K., Wei, J., Li, S.W., Yang, P.P., Mi, H.Y., Liu, C.T., Shen, C.Y., 2024. A semi-interpenetrating poly(ionic liquid) network-driven low hysteresis and transparent hydrogel as a self-powered multifunctional sensor. Adv. Funct. Mater. 34, 2401607. doi: 10.1002/adfm.202401607
|
|
Hawtof, R., Ghosh, S., Guarr, E., Xu, C.Y., Mohan Sankaran, R., Renner, J.N., 2019. Catalyst-free, highly selective synthesis of ammonia from nitrogen and water by a plasma electrolytic system. Sci. Adv. 5, eaat5778. doi: 10.1126/sciadv.aat5778
|
|
He, X.N., Zhang, B., Liu, Q.J., Chen, H., Cheng, J.X., Jian, B.C., Yin, H.L., Li, H.G., Duan, K., Zhang, J.W., Ge, Q., 2024. Highly conductive and stretchable nanostructured ionogels for 3D printing capacitive sensors with superior performance. Nat. Commun. 15, 6431. doi: 10.1038/s41467-024-50797-w
|
|
Hu, X.J., Li, Z.X., Xue, H., Huang, X.S., Cao, R., Liu, T.F., 2020. Designing a bifunctional Brønsted acid-base heterogeneous catalyst through precise installation of ligands on metal-organic frameworks. CCS Chem. 2, 616–622. doi: 10.31635/ccschem.019.201900040
|
|
Hu, Y., Zhang, M., Qin, C.R., Qian, X.Y., Zhang, L.N., Zhou, J.P., Lu, A., 2021. Transparent, conductive cellulose hydrogel for flexible sensor and triboelectric nanogenerator at subzero temperature. Carbohydr. Polym. 265, 118078. doi: 10.1016/j.carbpol.2021.118078
|
|
Jiang, G.Y., Wang, G., Zhu, Y., Cheng, W.K., Cao, K.Y., Xu, G.W., Zhao, D.W., Yu, H.P., 2022. A scalable bacterial cellulose ionogel for multisensory electronic skin. Research 2022, 9814767.
|
|
Kunchornsup, W., Sirivat, A., 2010. Effects of crosslinking ratio and aging time on properties of physical and chemical cellulose gels via 1-butyl-3-methylimidazolium chloride solvent. J. Sol Gel Sci. Technol. 56, 19–26. doi: 10.1007/s10971-010-2266-x
|
|
Lai, C.W., Yu, S.S., 2020. 3D printable strain sensors from deep eutectic solvents and cellulose nanocrystals. ACS Appl. Mater. Interfaces 12, 34235–34244. doi: 10.1021/acsami.0c11152
|
|
Lee, H., Erwin, A., Buxton, M.L., Kim, M., Stryutsky, A.V., Shevchenko, V.V., Sokolov, A.P., Tsukruk, V.V., 2021. Shape persistent, highly conductive ionogels from ionic liquids reinforced with cellulose nanocrystal network. Adv. Funct. Mater. 31, 2103083. doi: 10.1002/adfm.202103083
|
|
Li, N., Yu, Q.Y., Duan, S.D., Du, Y.J., Shi, X.J., Li, X.Y., Jiao, T.F., Qin, Z.H., He, X.M., 2024. Anti-swelling, high-strength, anisotropic conductive hydrogel with excellent biocompatibility for implantable electronic tendon. Adv. Funct. Mater. 34, 2309500. doi: 10.1002/adfm.202309500
|
|
Li, Z.L., Lin, Z.Q., 2021. Recent advances in polysaccharide-based hydrogels for synthesis and applications. Aggregate 2, e21. doi: 10.1002/agt2.21
|
|
Lin, J.H., Zhou, Q.F., Liao, Z.S., Chen, Y.H., Liu, Y.K., Liu, Q., Xiong, X.H., 2024. Steric hindrance engineering to modulate the closed pores formation of polymer-derived hard carbon for high-performance sodium-ion batteries. Angew. Chem. Int. Ed. 63, e202409906. doi: 10.1002/anie.202409906
|
|
Liu, X.H., Taiwo, O.O., Yin, C.Y., Ouyang, M.Z., Chowdhury, R., Wang, B.F., Wang, H.Z., Wu, B., Brandon, N.P., Wang, Q.G., Cooper, S.J., 2019. Aligned ionogel electrolytes for high-temperature supercapacitors. Adv. Sci. 6, 1801337. doi: 10.1002/advs.201801337
|
|
Long, Y., Jiang, B., Huang, T.C., Liu, Y.X., Niu, J.N., Wang, Z.L., Hu, W.G., 2023. Super-stretchable, anti-freezing, anti-drying organogel ionic conductor for multi-mode flexible electronics. Adv. Funct. Mater. 33, 2304625. doi: 10.1002/adfm.202304625
|
|
Ma, H.W., Cheng, Z.Y., Li, X.B., Li, B., Fu, Y.J., Jiang, J.C., 2023. Advances and challenges of cellulose functional materials in sensors. J. Bioresour. Bioprod. 8, 15–32.
|
|
Ma, L.L., Wang, J.X., He, J.M., Yao, Y.L., Zhu, X.D., Peng, L., Yang, J., Liu, X.R., Qu, M.N., 2021. Ultra-sensitive, durable and stretchable ionic skins with biomimetic micronanostructures for multi-signal detection, high-precision motion monitoring, and underwater sensing. J. Mater. Chem. A 9, 26949–26962. doi: 10.1039/d1ta08093h
|
|
Matsuno, R., Kokubo, Y., Kumagai, S., Takamatsu, S., Hashimoto, K., Takahara, A., 2020. Molecular design and characterization of ionic monomers with varying ion pair interaction energies. Macromolecules 53, 1629–1637. doi: 10.1021/acs.macromol.9b02731
|
|
Nordness, O., Brennecke, J.F., 2020. Ion dissociation in ionic liquids and ionic liquid solutions. Chem. Rev. 120, 12873–12902. doi: 10.1021/acs.chemrev.0c00373
|
|
Oh, S.J., Bae, J.W., 2023. All-in-one plasticized ionogel-based stretchable electrochromic devices. Chem. Eng. J. 467, 143367. doi: 10.1016/j.cej.2023.143367
|
|
Pang, Y.J., Luan, X.X., Zhang, K.F., Liu, Y.X., Li, L., Xie, C.X., Pang, J.H., 2023. Self-adhesive frost-resistant conductive hydrogel electrolytes based on TA@WSCA-Zn autocatalytic system for flexible and foldable solid-state capacitors. Chem. Eng. J. 469, 143943. doi: 10.1016/j.cej.2023.143943
|
|
Pu, X., Liu, M.M., Chen, X.Y., Sun, J.M., Du, C.H., Zhang, Y., Zhai, J.Y., Hu, W.G., Wang, Z.L., 2017. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3, e1700015. doi: 10.1126/sciadv.1700015
|
|
Rahmani, P., Shojaei, A., Sakorikar, T., Wang, M.X., Mendoza-Apodaca, Y., Dickey, M.D., 2024. Liquid metal nanoparticles physically hybridized with cellulose nanocrystals initiate and toughen hydrogels with piezoionic properties. ACS Nano. 18, 8038–8050. doi: 10.1021/acsnano.3c11063
|
|
Shen, X.P., Zhao, D.W., Xie, Y.J., Wang, Q.W., Shamshina, J.L., Rogers, R.D., Sun, Q.F., 2023. Cellulose gel mechanoreceptors–principles, applications and prospects. Adv. Funct. Mater. 33, 2214317. doi: 10.1002/adfm.202214317
|
|
Shi, J.Y., Kim, S., Li, P.J., Dong, F.Y., Yang, C.W., Nam, B., Han, C., Eig, E., Shi, L.L., Niu, S.M., Yue, J.P., Tian, B.Z., 2024. Active biointegrated living electronics for managing inflammation. Science 384, 1023–1030. doi: 10.1126/science.adl1102
|
|
Silva, S.S., Mano, J.F., Reis, R.L., 2017. Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications. Green Chem. 19, 1208–1220. doi: 10.1039/C6GC02827F
|
|
Someya, T., Amagai, M., 2019. Toward a new generation of smart skins. Nat. Biotechnol. 37, 382–388. doi: 10.1038/s41587-019-0079-1
|
|
Sun, Y.D., Li, X.F., Hu, T., Zhang, S.F., Niu, W.B., 2023. Dynamic acylhydrazone bonds cross-linked chromotropic photonic-ionic skin with self-healing and high resilience for interactive human-machine interface. Chem. Eng. J. 475, 146188. doi: 10.1016/j.cej.2023.146188
|
|
Tie, J.F., Mao, Z.P., Zhang, L.P., Zhong, Y., Xu, H., 2023. Strong and ultratough ionogel enabled by ingenious combined ionic liquids induced microphase separation. Adv. Funct. Mater. 33, 2307367. doi: 10.1002/adfm.202307367
|
|
Wang, B.H., Facchetti, A., 2019. Mechanically flexible conductors for stretchable and wearable e-skin and e-textile devices. Adv. Mater. 31, 1901408. doi: 10.1002/adma.201901408
|
|
Wang, F., Li, Q.C., Park, J.O., Zheng, S.H., Choi, E., 2021. Ultralow voltage high-performance bioartificial muscles based on ionically crosslinked polypyrrole-coated functional carboxylated bacterial cellulose for soft robots. Adv. Funct. Mater. 31, 2007749. doi: 10.1002/adfm.202007749
|
|
Wang, K., Liu, S.Z., Yu, J.H., Hong, P.X., Wang, W.Y., Cai, W.L., Huang, J.Y., Jiang, X.C., Lai, Y.K., Lin, Z.Q., 2025. Hofmeister effect-enhanced, nanoparticle-shielded, thermally stable hydrogels for anti-UV, fast-response, and all-day-modulated smart windows. Adv. Mater. 37, 2418372. doi: 10.1002/adma.202418372
|
|
Wang, L., Liu, Y.L., Wang, M.S., 2023. Effects of atypical hydrogen bonds and π-π interactions on nonlinear optical properties: dimers of triangular structures based on perylene, naphthalene, and pyromellitic diimides. Langmuir 39, 357–366. doi: 10.1021/acs.langmuir.2c02594
|
|
Xia, Q.Q., Liu, Y.Z., Meng, J., Cheng, W.K., Chen, W.S., Liu, S.X., Liu, Y.X., Li, J., Yu, H.P., 2018. Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass. Green Chem. 20, 2711–2721. doi: 10.1039/c8gc00900g
|
|
Xia, Z.H., Li, J.Y., Zhang, J.M., Zhang, X.C., Zheng, X.J., Zhang, J., 2020. Processing and valorization of cellulose, lignin and lignocellulose using ionic liquids. J. Bioresour. Bioprod. 5, 79–95. doi: 10.1016/j.jobab.2020.04.001
|
|
Xue, Z.M., Zhao, X.H., Sun, R.C., Mu, T.C., 2016. Biomass-derived γ-valerolactone-based solvent systems for highly efficient dissolution of various lignins: dissolution behavior and mechanism study. Acs Sustain. Chem. Eng. 4, 3864–3870. doi: 10.1021/acssuschemeng.6b00639
|
|
Yang, X.Y., Tian, Y.Q., Wu, B., Jia, W., Hou, C.Y., Zhang, Q.H., Li, Y.G., Wang, H.Z., 2022. High-performance ionic thermoelectric supercapacitor for integrated energy conversion-storage. Energy Environmental Mater. 5, 954–961. doi: 10.1002/eem2.12220
|
|
Yao, X., Zhang, S.F., Wei, N., Qian, L.W., Coseri, S., 2024a. Cellulose-based conductive hydrogels for emerging intelligent sensors. Adv. Fiber Mater. 6, 1256–1305. doi: 10.1007/s42765-024-00418-4
|
|
Yao, X., Zhang, S.F., Wei, N., Qian, L.W., Ding, H., Liu, J.T., Song, W.Q., Coseri, S., 2024b. Poly(ionic liquid) functionalization: a general strategy for strong, tough, ionic conductive, and multifunctional polysaccharide hydrogels toward sensors. SusMat 4, e249. doi: 10.1002/sus2.249
|
|
Ye, H.R., Jiang, J.X., Yang, Y., Shi, J.T., Sun, H.B., Zhang, L., Ge, S.B., Zhang, Y.D., Zhou, Y.H., Liew, R.K., Zhang, Z.F., 2023a. Ultra-strong and environmentally friendly waste polyvinyl chloride/paper biocomposites. Adv. Compos. Hybrid Mater. 6, 81. doi: 10.1007/s42114-023-00664-x
|
|
Ye, Y.H., Oguzlu, H., Zhu, J.Y., Zhu, P.H., Yang, P., Zhu, Y.L., Wan, Z.M., Rojas, O.J., Jiang, F., 2023b. Ultrastretchable ionogel with extreme environmental resilience through controlled hydration interactions. Adv. Funct. Mater. 33, 2209787. doi: 10.1002/adfm.202209787
|
|
Zhang, H.Y., Yang, Q.N., Xu, L.J., Li, N., Tan, H.H., Du, J.J., Yu, M.L., Xu, J.X., 2024. Triboelectric nanogenerators based on hydrated lithium ions incorporated double-network hydrogels for biomechanical sensing and energy harvesting at low temperature. Nano Energy 125, 109521. doi: 10.1016/j.nanoen.2024.109521
|
|
Zhang, L., Jiang, D.W., Dong, T.H., Das, R., Pan, D., Sun, C.Y., Wu, Z.J., Zhang, Q.B., Liu, C.T., Guo, Z.H., 2020. Overview of ionogels in flexible electronics. Chem. Rec. 20, 948–967. doi: 10.1002/tcr.202000041
|
|
Zhang, W., Wu, B.H., Sun, S.T., Wu, P.Y., 2021. Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network. Nat. Commun. 12, 4082. doi: 10.1038/s41467-021-24382-4
|
|
Zhao, D.W., Zhu, Y., Cheng, W.K., Xu, G.W., Wang, Q.W., Liu, S.X., Li, J., Chen, C.J., Yu, H.P., Hu, L.B., 2020. A dynamic gel with reversible and tunable topological networks and performances. Matter 2, 390–403. doi: 10.1016/j.matt.2019.10.020
|
|
Zheng, S.Q., Chen, X.L., Shen, K.X., Cheng, Y.L., Ma, L., Ming, X.Q., 2024. Hydrogen bonds reinforced ionogels with high sensitivity and stable autonomous adhesion as versatile ionic skins. ACS Appl. Mater. Interfaces 16, 4035–4044. doi: 10.1021/acsami.3c16195
|
|
Zhong, D.L., Wu, C., Jiang, Y.W., Yuan, Y.J., Kim, M.G., Nishio, Y., Shih, C.C., Wang, W.C., Lai, J.C., Ji, X.Z., Gao, T.Z., Wang, Y.X., Xu, C.Y., Zheng, Y., Yu, Z.A., Gong, H.X., Matsuhisa, N., Zhao, C.Z., Lei, Y.S., Liu, D.Y., Zhang, S., Ochiai, Y., Liu, S.H., Wei, S.Y., Tok, J.B.H., Bao, Z.N., 2024. High-speed and large-scale intrinsically stretchable integrated circuits. Nature 627, 313–320. doi: 10.1038/s41586-024-07096-7
|
|
Zhu, A.T., Huang, J., Xie, H.B., Yue, W., Qin, S.D., Zhang, F.Z., Xu, Q.Q., 2022. Use of a superbase/DMSO/CO2 solvent in order to incorporate cellulose into organic ionogel electrolyte for flexible supercapacitors. Chem. Eng. J. 446, 137032. doi: 10.1016/j.cej.2022.137032
|
|
Zhu, R.X., Zhu, D.D., Zheng, Z., Wang, X.L., 2024. Tough double network hydrogels with rapid self-reinforcement and low hysteresis based on highly entangled networks. Nat. Commun. 15, 1344. doi: 10.1038/s41467-024-45485-8
|
|
Zhu, T.X., Ni, Y.M., Biesold, G.M., Cheng, Y., Ge, M.Z., Li, H.Q., Huang, J.Y., Lin, Z.Q., Lai, Y.K., 2023a. Recent advances in conductive hydrogels: classifications, properties, and applications. Chem. Soc. Rev. 52, 473–509. doi: 10.1039/d2cs00173j
|
|
Zhu, Y., Guo, Y.H., Cao, K.Y., Zeng, S.Q., Jiang, G.Y., Liu, Y.Z., Cheng, W.K., Bai, W.J., Weng, X.L., Chen, W.S., Zhao, D.W., Yu, H.P., Yu, G.H., 2023b. A general strategy for synthesizing biomacromolecular ionogel membranes via solvent-induced self-assembly. Nat. Synth. 2, 864–872. doi: 10.1038/s44160-023-00315-5
|