| Citation: | Ameena Bacchus, Weijue Gao, Pedram Fatehi. Structural insights of sulfoethylated kraft lignin at different drying temperatures ✩[J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 497-512. doi: 10.1016/j.jobab.2025.09.001 |
|
Ail, U., Phopase, J., Nilsson, J., Khan, Z.U., Inganäs, O., Berggren, M., Crispin, X., 2020. Effect of sulfonation level on lignin/carbon composite electrodes for large-scale organic batteries. ACS Sustain. Chem. Eng. 8, 17933–17944. doi: 10.1021/acssuschemeng.0c05397
|
|
Antony, A., Farid, M., 2022. Effect of temperatures on polyphenols during extraction. Appl. Sci. 12, 2107. doi: 10.3390/app12042107
|
|
Aro, T., Fatehi, P., 2017. Production and application of lignosulfonates and sulfonated lignin. ChemSusChem 10, 1861–1877. doi: 10.1002/cssc.201700082
|
|
Bacchus, A., Fatehi, P., 2024. Structural changes of cationic grafted lignin at different drying temperatures. Ind. Crops Prod. 222, 119837.
|
|
Bahrpaima, K., Fatehi, P., 2018. Synthesis and characterization of carboxyethylated lignosulfonate. ChemSusChem 11, 2967–2980. doi: 10.1002/cssc.201800994
|
|
Balakshin, M.Y., Capanema, E.A., Sulaeva, I., Schlee, P., Huang, Z.E., Feng, M., Borghei, M., Rojas, O.J., Potthast, A., Rosenau, T., 2021. Cover feature: new opportunities in the valorization of technical lignins. ChemSusChem 14, 992. doi: 10.1002/cssc.202100110
|
|
Barros, J.J.P., Oliveira, R.R., Luna, C.B.B., Wellen, R.M.R., Moura, E.A.B., 2023. Effectiveness of modified lignin on poly(butylene adipate-co-terephthalate)/poly(lactic acid) mulch film performance. J. Appl. Polym. Sci. 140, e54684.
|
|
Beaucamp, A., Muddasar, M., Amiinu, I.S., Moraes Leite, M., Culebras, M., Latha, K., Gutiérrez, M.C., Rodriguez-Padron, D., del Monte, F., Kennedy, T., Ryan, K.M., Luque, R., Titirici, M.M., Collins, M.N., 2022. Lignin for energy applications–state of the art, life cycle, technoeconomic analysis and future trends. Green Chem. 24, 8193–8226. doi: 10.1039/d2gc02724k
|
|
Bertella, S., Luterbacher, J.S., 2020. Lignin functionalization for the production of novel materials. Trends Chem. 2, 440–453.
|
|
Bethell, D., Fessey, R.E., Namwindwa, E., Roberts, D.W., 2001. The hydrolysis of C12 primary alkyl sulfates in concentrated aqueous solutions. Part 1. General features, kinetic form and mode of catalysis in sodium dodecyl sulfate hydrolysis. J. Chem. Soc., 2, 1489–1495.
|
|
Breilly, D., Fadlallah, S., Froidevaux, V., Colas, A., Allais, F., 2021. Origin and industrial applications of lignosulfonates with a focus on their use as superplasticizers in concrete. Constr. Build. Mater. 301, 124065.
|
|
Chen, Y.D., Ai, X.L., Huang, B., Huang, M.J., Huang, Y., Lu, Y., 2017. Consecutive preparation of hydrochar catalyst functionalized in situ with sulfonic groups for efficient cellulose hydrolysis. Cellulose 24, 2743–2752. doi: 10.1007/s10570-017-1306-x
|
|
Cui, C.Z., Sadeghifar, H., Sen, S., Argyropoulos, D.S., 2013. Toward thermoplastic lignin polymers; part Ⅱ: thermal & polymer characteristics of kraft lignin & derivatives. BioResources 8, 864–886.
|
|
Demuner, I.F., Borges Gomes, F.J., Gomes, J.S., Coura, M.R., Borges, F.P., Macedo Ladeira Carvalho, A.M., Silva, C.M., 2021. Improving kraft pulp mill sustainability by lignosulfonates production from processes residues. J. Clean. Prod. 317, 128286.
|
|
Diaconeasa, Z., 2018. Time-dependent degradation of polyphenols from thermally-processed berries and their in vitro antiproliferative effects against melanoma. Molecules 23, 2534. doi: 10.3390/molecules23102534
|
|
Duong, L.D., Luong, N.D., Binh, N.T.T., Park, I.K., Lee, S.H., Kim, D.S., Lee, Y.S., Lee, Y.K., Kim, B.W., Kim, K.H., Yoon, H.K., Yun, J.H., Nam, J.D., 2013. Chemical and rheological characteristics of thermally stable kraft lignin polycondensates analyzed by dielectric properties. BioResources 8, 4518–4532.
|
|
Eraghi Kazzaz, A., Fatehi, P., 2020. Technical lignin and its potential modification routes: a mini-review. Ind. Crops Prod. 154, 112732.
|
|
Eraghi Kazzaz, A., Hosseinpour Feizi, Z., Fatehi, P., 2019. Grafting strategies for hydroxy groups of lignin for producing materials. Green Chem. 21, 5714–5752. doi: 10.1039/c9gc02598g
|
|
Gao, X.W., Hou, L.X., Yang, W.J., Dong, L.L., Ge, X., 2025. Lignin-based nanoparticles stabilized pickering emulsion for enhanced catalytic hydrogenation. Langmuir 41, 1937–1947. doi: 10.1021/acs.langmuir.4c04464
|
|
Gellerstedt, G., 2015. Softwood kraft lignin: raw material for the future. Ind. Crops Prod. 77, 845–854.
|
|
Ghavidel, N., Fatehi, P., 2020. Pickering/non-Pickering emulsions of nanostructured sulfonated lignin derivatives. ChemSusChem 13, 4567–4578. doi: 10.1002/cssc.202000965
|
|
Ghavidel, N., Konduri, M.K.R., Fatehi, P., 2021. Chemical reactivity and sulfo-functionalization response of enzymatically produced lignin. Ind. Crops Prod. 172, 113950.
|
|
Gil-Chávez, J., Gurikov, P., Hu, X.H., Meyer, R., Reynolds, W., Smirnova, I., 2021. Application of novel and technical lignins in food and pharmaceutical industries: structure-function relationship and current challenges. Biomass Convers. Biorefin. 11, 2387–2403. doi: 10.1007/s13399-019-00458-6
|
|
Heitner, C., Dimmel, D., Schmidt, J.A., 2010. Lignin and Lignans: Advances in Chemistry. Taylor & Francis, Boca Raton.
|
|
Kim, S., Silva, C., Zille, A., Lopez, C., Evtuguin, D.V., Cavaco-Paulo, A., 2009. Characterisation of enzymatically oxidised lignosulfonates and their application on lignocellulosic fabrics. Polym. Int. 58, 863–868. doi: 10.1002/pi.2600
|
|
Komatsu, T., Yokoyama, T., 2021. Revisiting the condensation reaction of lignin in alkaline pulping with quantitativity part Ⅰ: the simplest condensation between vanillyl alcohol and creosol under soda cooking conditions. J. Wood Sci. 67, 45.
|
|
Konduri, M.K.R., Fatehi, P., 2015. Production of water-soluble hardwood kraft lignin via sulfomethylation using formaldehyde and sodium sulfite. ACS Sustain. Chem. Eng. 3, 1172–1182. doi: 10.1021/acssuschemeng.5b00098
|
|
Konduri, M.K.R., Fatehi, P., 2018. Designing anionic lignin based dispersant for Kaolin suspensions. Colloids Surf. A Physicochem. Eng. Aspects 538, 639–650.
|
|
Kouisni, L., Gagné, A., Maki, K., Holt-Hindle, P., Paleologou, M., 2016. LignoForce system for the recovery of lignin from black liquor: feedstock options, odor profile, and product characterization. ACS Sustain. Chem. Eng. 4, 5152–5159. doi: 10.1021/acssuschemeng.6b00907
|
|
Kwon, Y., Lee, S.Y., Hong, S., Jang, J.H., Henkensmeier, D., Yoo, S.J., Kim, H.J., Kim, S.H., 2015. Novel sulfonated poly(arylene ether sulfone) containing hydroxyl groups for enhanced proton exchange membrane properties. Polym. Chem. 6, 233–239.
|
|
Lancefield, C.S., Wienk, H.J., Boelens, R., Weckhuysen, B.M., Bruijnincx, P.C.A., 2018. Identification of a diagnostic structural motif reveals a new reaction intermediate and condensation pathway in kraft lignin formation. Chem. Sci. 9, 6348–6360. doi: 10.1039/c8sc02000k
|
|
Li, N., Li, Y.D., Yoo, C.G., Yang, X.H., Lin, X.L., Ralph, J., Pan, X.J., 2018. An uncondensed lignin depolymerized in the solid state and isolated from lignocellulosic biomass: a mechanistic study. Green Chem. 20, 4224–4235. doi: 10.1039/c8gc00953h
|
|
Li, Q.F., Liu, S.R., Zhang, X., Hu, G.S., Xia, H.A., 2022. High-efficiency sulfur-doped carbon photocatalysts synthesized by carbonization of lignosulfonate at low temperature. Mater. Today Commun., 33.
|
|
Luo, J., Liu, T.L., 2023. Electrochemical valorization of lignin: status, challenges, and prospects. J. Bioresour. Bioprod. 8, 1–14.
|
|
Lv, Z.L., Zheng, Y., Zhou, H., Pan, Z., Li, C.Y., Dai, L., Zhang, M., Si, C.L., 2022. Hydrothermal method-assisted synthesis of self-crosslinked all-lignin-based hydrogels. Int. J. Biol. Macromol. 216, 670–675.
|
|
Mazar, A., Paleologou, M., 2024. Comparison of the effects of three drying methods on lignin properties. Int. J. Biol. Macromol. 258, 128974.
|
|
Meng, X.Z., Crestini, C., Ben, H.X., Hao, N.J., Pu, Y.Q., Ragauskas, A.J., Argyropoulos, D.S., 2019. Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy. Nat. Protoc. 14, 2627–2647. doi: 10.1038/s41596-019-0191-1
|
|
Mili, M., Hashmi, S.A.R., Ather, M., Hada, V., Markandeya, N., Kamble, S., Mohapatra, M., Rathore, S.K.S., Srivastava, A.K., Verma, S., 2022. Novel lignin as natural-biodegradable binder for various sectors: a review. J. Appl. Polym. Sci. 139, 51951.
|
|
Mo, W.X., Chen, K.F., Yang, X., Kong, F.G., Liu, J.Y., Li, B., 2022. Elucidating the hornification mechanism of cellulosic fibers during the process of thermal drying. Carbohydr. Polym. 289, 119434.
|
|
Mu, X.L., Han, Z., Liu, C.B., Zhang, D.J., 2019. Mechanistic insights into formaldehyde-blocked lignin condensation: a DFT study. J. Phys. Chem. C 123, 8640–8648. doi: 10.1021/acs.jpcc.9b00247
|
|
Ouyang, X.P., Ke, L.X., Qiu, X.Q., Guo, Y.X., Pang, Y.X., 2009. Sulfonation of alkali lignin and its potential use in dispersant for cement. J. Dispers. Sci. Technol. 30, 1–6. doi: 10.1080/01932690802473560
|
|
Pinto, P.I.F., Magina, S., Budjav, E., Pinto, P.C.R., Liebner, F., Evtuguin, D., 2022. Cationization of eucalyptus kraft LignoBoost lignin: preparation, properties, and potential applications. Ind. Eng. Chem. Res. 61, 3503–3515. doi: 10.1021/acs.iecr.1c04899
|
|
Sallem-Idrissi, N., Vanderghem, C., Pacary, T., Richel, A., Debecker, D.P., Devaux, J., Sclavons, M., 2016. Lignin degradation and stability: volatile organic compounds (VOCs) analysis throughout processing. Polym. Degrad. Stab. 130, 30–37.
|
|
Sarkar, D., Kang, P.Y., Nielsen, S.O., Qin, Z.P., 2019. Non-arrhenius reaction-diffusion kinetics for protein inactivation over a large temperature range. ACS Nano 13, 8669–8679. doi: 10.1021/acsnano.9b00068
|
|
Seera, S.D.K., Pester, C.W., 2023. Surface-initiated PET-RAFT via the Z-group approach. ACS Polym. Au. 3, 428–436. doi: 10.1021/acspolymersau.3c00028
|
|
Sen, S., Patil, S., Argyropoulos, D.S., 2015. Thermal properties of lignin in copolymers, blends, and composites: a review. Green Chem. 17, 4862–4887.
|
|
Silverstein, R.M., Webster, F.X., Kiemle, D.J., Bryce, D.L., 2015. Spectrometric Identification of Organic Compounds. Wiley, Hoboken.
|
|
Son, D., Cho, S., Nam, J., Lee, H., Kim, M., 2020. X-ray-based spectroscopic techniques for characterization of polymer nanocomposite materials at a molecular level. Polymers (Basel) 12, 1053. doi: 10.3390/polym12051053
|
|
Sutradhar, S., Gao, W.J., Fatehi, P., 2023. A green cement plasticizer from softwood kraft lignin. Ind. Eng. Chem. Res. 62(3), 1676–1687. doi: 10.1021/acs.iecr.2c03970
|
|
Tang, T., Fei, J.H., Zheng, Y., Xu, J., He, H.W., Ma, M., Shi, Y.Q., Chen, S., Wang, X., 2023. Water-soluble lignosulfonates: structure, preparation, and application. ChemistrySelect 8, e202204941.
|
|
Vural, D., Smith, J.C., Petridis, L., 2018. Dynamics of the lignin glass transition. Phys. Chem. Chem. Phys. 20, 20504–20512. doi: 10.1039/c8cp03144d
|
|
Wang, B.W., Qiu, D.K., Gu, Y.H., Shan, Z., Shi, R.N., Luo, J., Qi, S., Wang, Y.L., Jiang, B., Jin, Y.C., 2025. A lignin-based controlled/sustained release hydrogel by integrating mechanical strengthening and bioactivities of lignin. J. Bioresour. Bioprod. 10, 62–76. doi: 10.1117/12.3057550
|
|
Wang, W.S., Li, Y., Zhang, H.Y., Chen, T., Sun, G.W., Han, Y., Li, J.G., 2022. Double-interpenetrating-network lignin-based epoxy resin adhesives for resistance to extreme environment. Biomacromolecules 23, 779–788. doi: 10.1021/acs.biomac.1c01204
|
|
Xiao, X., Jiang, J.G., Wang, Y., Wang, B., Yuan, T.Q., Shi, Q., Liao, X.P., Shi, B., Sun, R.C., 2021. Microwave-assisted sulfonation of lignin for the fabrication of a high-performance dye dispersant. ACS Sustain. Chem. Eng. 9, 9053–9061. doi: 10.1021/acssuschemeng.1c02148
|
|
Yang, J., Wang, X.T., Liu, H.L., 2023. Lignins and lignin derivatives as dispersants for copper phthalocyanine pigment nanoparticles. ACS Sustain. Chem. Eng. 11, 8199–8207. doi: 10.1021/acssuschemeng.2c04657
|
|
Zhang, N., Li, Z., Xiao, Y.N., Pan, Z., Jia, P.Y., Feng, G.D., Bao, C.Y., Zhou, Y.H., Hua, L.L., 2020a. Lignin-based phenolic resin modified with whisker silicon and its application. J. Bioresour. Bioprod. 5, 67–77. doi: 10.1016/j.jobab.2020.03.008
|
|
Zhang, H., Fu, S.Y., Chen, Y.C., 2020b Basic understanding of the color distinction of lignin and the proper selection of lignin in color-depended utilizations. Int. J. Biol. Macromol. 147, 607–615.
|
|
Zhang, H., Bai, Y.C., Zhou, W.P., Chen, F.G., 2017. Color reduction of sulfonated eucalyptus kraft lignin. Int. J. Biol. Macromol. 97, 201–208.
|
|
Zhao, X.J., Liu, Y.H., Sun, B.H., Liu, Z.C., Shao, Z.B., Liu, X.B., Zhang, H.L., Sun, Z.Y., Hu, W., 2023. Lignin-derived flame retardant for improving fire safety and mechanical properties of polypropylene. J. Appl. Polym. Sci. 140, e54739.
|
|
Zheng, C., Li, D.F., Ek, M., 2019. Improving fire retardancy of cellulosic thermal insulating materials by coating with bio-based fire retardants. Nord. Pulp Pap. Res. J. 34, 96–106. doi: 10.1515/npprj-2018-0031
|