| Citation: | Hao Jia, Wenhui Su, Bin Huang, Xianxian He, Shaohui Fan, Zhoubin Huang, Chuanxia Pan, Chenye Liu. Hydrothermal aging of moso bamboo: Degradation mechanisms and storage life prediction[J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 660-675. doi: 10.1016/j.jobab.2025.09.002 |
|
Akinyemi, B.A., Omoniyi, T.E., 2020. Effect of experimental wet and dry cycles on bamboo fibre reinforced acrylic polymer modified cement composites. J. Mech. Behav. Mater. 29, 9. doi: 10.1515/jmbm-2020-0002
|
|
Alshahrani, H., Arun Prakash, V.R., 2022. Mechanical, thermal, viscoelastic and hydrophobicity behavior of complex grape stalk lignin and bamboo fiber reinforced polyester composite. Int. J. Biol. Macromol. 223, 851–859. doi: 10.1016/j.ijbiomac.2022.10.272
|
|
Bhowmik, S., Kumar, S., Mahakur, V.K., 2024. Various factors affecting the fatigue performance of natural fiber-reinforced polymer composites: a systematic review. Iran. Polym. J. 33, 249–271. doi: 10.1007/s13726-023-01243-z
|
|
Binfield, L., Nasir, V., Dai, C.P., 2024. Bamboo industrialization in the era of industry 5.0: an exploration of key concepts, synergies and gaps. Environ. Dev. Sustain. doi: 10.1007/s10668-024-05584-4.
|
|
Castro, O., Bruneau, P., Sottet, J.S., Torregrossa, D., 2023. Landscape of high-performance python to develop data science and machine learning applications. ACM Comput. Surv. 56(3), 1–30. doi: 10.5455/ijmrcr.172-1656142184
|
|
Chakkour, M., Moussa, M.O., Khay, I., Balli, M., Ben Zineb, T., 2024. Hygroscopic aging cycles of bamboo fiber/epoxy composites: comparative study between distilled water and sea water. Ind. Crops Prod. 209, 117957. doi: 10.1016/j.indcrop.2023.117957
|
|
Chakkour, M., Ould Moussa, M., Khay, I., Balli, M., Ben Zineb, T., 2023. Effects of humidity conditions on the physical, morphological and mechanical properties of bamboo fibers composites. Ind. Crops Prod. 192, 116085. doi: 10.1016/j.indcrop.2022.116085
|
|
Chang, F.C., Chen, K.S., Yang, P.Y., Ko, C.H., 2018. Environmental benefit of utilizing bamboo material based on life cycle assessment. J. Clean. Prod. 204, 60–69. doi: 10.1016/j.jclepro.2018.08.248
|
|
Chen, D.Y., Zhou, J.B., Zhang, Q.S., 2014. Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo. Bioresour. Technol. 169, 313–319. doi: 10.1016/j.biortech.2014.07.009
|
|
Chen, G.W., Luo, H.Y., 2023. Effects of moisture content and fibrous structure on the uniaxial compression behavior of natural bamboo. Constr. Build. Mater. 408, 133711. doi: 10.1016/j.conbuildmat.2023.133711
|
|
Chen, M.L., Ye, L., Li, H., Wang, G., Chen, Q., Fang, C.H., Dai, C.P., Fei, B.H., 2020. Flexural strength and ductility of moso bamboo. Constr. Build. Mater. 246, 118418. doi: 10.1016/j.conbuildmat.2020.118418
|
|
Chen, X.Y., Jiang, H., Wang, G., Wang, J.Z., Chen, F.M., 2024. Disposable bamboo fiber meal boxes characterized by efficient preparation, excellent performance, and the potential for beneficial degradation. J. Clean. Prod. 434, 139973. doi: 10.1016/j.jclepro.2023.139973
|
|
Cheng, A.K., Ma, H.X., Liu, Y., Wang, X.J., Hu, C.S., Lin, X.Y., Zhou, Q.F., Tu, D.Y., 2023. Effect of drying method on the surface color of Bambusa textilis McClure. Ind. Crops Prod. 198, 116670. doi: 10.1016/j.indcrop.2023.116670
|
|
Correal, J.F., Ramirez, F., Peña, F.O., 2025. Behavior of bamboo properties as a construction material under artificial aging and weathering acceleration factors. Constr. Build. Mater. 464, 140058. doi: 10.1016/j.conbuildmat.2025.140058
|
|
Deng, J., Wei, Y., Chen, S., Huang, S.L., Ding, M.M., Li, G.F., 2024. Aging properties of bamboo scrimber after cyclic dry-wet exposure. Constr. Build. Mater. 453, 139043. doi: 10.1016/j.conbuildmat.2024.139043
|
|
Depuydt, D.E.C., Soete, J., Asfaw, Y.D., Wevers, M., Ivens, J., van Vuure, A.W., 2019. Sorption behaviour of bamboo fibre reinforced composites, why do they retain their properties? Compos. Part A Appl. Sci. Manuf. 119, 48–60. doi: 10.1016/j.compositesa.2019.01.020
|
|
Dubey, S., Gupta, D., Mallik, M., 2024. Foretelling the compressive strength of bamboo using machine learning techniques. Eng. Comput. 41, 2251–2288. doi: 10.1108/ec-06-2024-0507
|
|
Gao, Q., Gan, J., Wang, P.X., Huang, Y.X., Zhang, D.H., Yu, W.J., 2025. Bio-inspired hierarchical bamboo-based air filters for efficient removal of particulate matter and toxic gases. Exploration 5, 20240012. doi: 10.1002/EXP.20240012
|
|
Habibi, M.K., Samaei, A.T., Gheshlaghi, B., Lu, J., Lu, Y., 2015. Asymmetric flexural behavior from bamboo's functionally graded hierarchical structure: underlying mechanisms. Acta Biomater. 16, 178–186. doi: 10.1016/j.actbio.2015.01.038
|
|
Han, S.Y., Xu, H.Q., Chen, F.M., Wang, G., 2023. Construction relationship between a functionally graded structure of bamboo and its strength and toughness: underlying mechanisms. Constr. Build. Mater. 379, 131241. doi: 10.1016/j.conbuildmat.2023.131241
|
|
Hone, T., Cahill, L., Robinson, A., Korde, C., Taylor, D., 2020. The splitting of bamboo in response to changes in humidity and temperature. J. Mech. Behav. Biomed. Mater. 111, 103990. doi: 10.1016/j.jmbbm.2020.103990
|
|
Huang, B., Wang, X.K., Chen, L., Su, N., Liu, L.T., Luan, Y., Ma, X.X., Fei, B.H., Fang, C.H., 2024. Impact of the natural structure of cortex and pith ring on water loss and deformation in bamboo processing. Constr. Build. Mater. 411, 134396. doi: 10.1016/j.conbuildmat.2023.134396
|
|
Huang, H.H., Xu, C.L., Zhu, X.H., Li, B., Huang, C.X., 2023. Lignin-enhanced wet strength of cellulose-based materials: a sustainable approach. Green Chem. 25, 4995–5009. doi: 10.1039/d3gc01505j
|
|
Huang, Y.X., Jiang, K.X., He, Y.Q., Hu, J., Dyer, K., Chen, S., Akinlabi, E., Zhang, D.H., Zhang, X.H., Yu, Y.L., Yu, W.J., Xu, B.B., 2025. A natural lignification inspired super-hard wood-based composites with extreme resilience. Adv. Mater. 37, 2502266. doi: 10.1002/adma.202502266
|
|
Jawaid, M., Chee, S.S., Asim, M., Saba, N., Kalia, S., 2022. Sustainable kenaf/bamboo fibers/clay hybrid nanocomposites: properties, environmental aspects and applications. J. Clean. Prod. 330, 129938. doi: 10.1016/j.jclepro.2021.129938
|
|
Jin, K.Y., Zhong, Z.Z., Zhao, E.Y., 2024. Sustainable digital marketing under big data: an AI random forest model approach. IEEE Trans. Eng. Manag. 71, 3566–3579. doi: 10.1109/tem.2023.3348991
|
|
Kelkar, B.U., Shukla, S.R., Yadav, S.M., Bansal, R., 2023. Performance of laminated bamboo lumber and bamboo strand lumber coated with solvent and water-based polyurethane against accelerated UV and natural weathering. Ind. Crops Prod. 192, 116058. doi: 10.1016/j.indcrop.2022.116058
|
|
Leng, Y.B., Xu, Q.F., Chen, L.Z., 2018. Research progress of application of engineered bamboo in building structures. Build. Struct. 48(10), 89–97. doi: 10.1504/ijnm.2018.10009999
|
|
Leng, Y.B., Xu, Q.F., Chen, L.Z., Wang, M.Q., Harries, K.A., Chen, X., 2023. Mechanical performance of engineered bamboo subjected to accelerated aging with single and multiple durability exposures. Constr. Build. Mater. 388, 131725. doi: 10.1016/j.conbuildmat.2023.131725
|
|
Li, H.D., Chen, F.M., Xian, Y., Deng, J.C., Wang, G., Cheng, H.T., 2017. An empirical model for predicting the mechanical properties degradation of bamboo bundle laminated veneer lumber (BLVL) by hygrothermal aging treatment. Eur. J. Wood Wood Prod. 75, 553–560. doi: 10.1007/s00107-016-1100-8
|
|
Li, H.T., Liu, Y., Wu, Y.Q., Dauletbek, A., Duan, Y.J., Corbi, O., 2024a. The aging behavior of moso bamboo in natural weathering condition. Ind. Crops Prod. 222, 119901. doi: 10.1016/j.indcrop.2024.119901
|
|
Li, J.N., Guan, Y., Ma, X.X., Wang, S.Y., Xia, C.L., Cai, L.P., Fei, B.H., 2024b Multiscale viscoelasticity response for bamboo after partial hemicellulose removal treatment. Ind. Crops Prod. 209, 117983. doi: 10.1016/j.indcrop.2023.117983
|
|
Li, J.N., Yan, J., Zhou, Y.Y., Yang, S.L., Singh, A., 2024c. Analyzing the effects of size and density on the ultimate compressive strength of structural laminated bamboo parallel to the grain. J. Build. Eng. 90, 109481. doi: 10.1016/j.jobe.2024.109481
|
|
Li, X.Z., Ji, S.Y., Li, T., Liu, Z.X., Hao, X.F., Chen, Z.J., Zhong, Y., Li, X.J., 2023. The physical, mechanical and fire performance of bamboo scrimber processed with thermal-treated bamboo bundles. Ind. Crops Prod. 205, 117549. doi: 10.1016/j.indcrop.2023.117549
|
|
Li, X.Z., Mou, Q.Y., Ji, S.Y., Li, X.J., Chen, Z.J., Yuan, G.M., 2022a. Effect of elevated temperature on physical and mechanical properties of engineered bamboo composites. Ind. Crops Prod. 189, 115847. doi: 10.1016/j.indcrop.2022.115847
|
|
Li, Z.Z., Luan, Y., Hu, J.B., Fang, C.H., Liu, L.T., Ma, Y.F., Liu, Y., Fei, B.H., 2022b Bamboo heat treatments and their effects on bamboo properties. Constr. Build. Mater. 331, 127320. doi: 10.1016/j.conbuildmat.2022.127320
|
|
Liese, W., 1987. Research on bamboo. Wood Sci. Technol. 21, 189–209. doi: 10.1007/bf00351391
|
|
Lin, F., Zhong, H., Bao, Y.J., Li, N., Zheng, Y.X., Gong, Y., Wu, X.J., Li, Y.J., Bao, M.Z., Zhang, W.G., 2025. An efficient high-temperature saturated-steam process for bamboo flattening: crack generation and improvement mechanisms. Constr. Build. Mater. 473, 141074. doi: 10.1016/j.conbuildmat.2025.141074
|
|
Liu, J.L., Kim, J.I., Cusumano, J.C., Chapple, C., Venugopalan, N., Fischetti, R.F., Makowski, L., 2016. The impact of alterations in lignin deposition on cellulose organization of the plant cell wall. Biotechnol. Biofuels 9, 126. doi: 10.1186/s13068-016-0540-z
|
|
Liu, Y., Li, H.T., Dauletbek, A., 2024. Effects of natural weathering on the mechanical properties of moso bamboo internodes and nodes. Constr. Build. Mater. 417, 135313. doi: 10.1016/j.conbuildmat.2024.135313
|
|
Liu, Y.D., 2012. Bamboo timber mildew and anti-mold technology. Adv. Eng. Forum 4, 139–144. doi: 10.4028/www.scientific.net/AEF.4.139
|
|
Lou, Z.C., Wang, Q.Y., Sun, W., Liu, J., Yan, H., Han, H., Bian, H.Y., Li, Y.J., 2022. Regulating lignin content to obtain excellent bamboo-derived electromagnetic wave absorber with thermal stability. Chem. Eng. J. 430, 133178. doi: 10.1016/j.cej.2021.133178
|
|
Luan, Y., Liu, L.T., Ma, Y.F., Yang, Y.T., Jiang, M.H., Semple, K., Dai, C.P., Fei, B.H., Fang, C.H., 2023. An integrated hydrothermal process of bamboo flattening, densification and drying: mechanical properties and strengthening mechanisms. Mater. Des. 226, 111610. doi: 10.1016/j.matdes.2023.111610
|
|
Madhushan, S., Buddika, S., Bandara, S., Navaratnam, S., Abeysuriya, N., 2023. Uses of bamboo for sustainable construction: a structural and durability perspective: a review. Sustainability 15, 11137. doi: 10.3390/su151411137
|
|
Peng, H., Jiang, J., Zhan, T.Y., Lyu, J.X., 2025. Moisture-dependent asymmetric flexural performance of moso bamboo (Phyllostachys pubescens). Constr. Build. Mater. 461, 139930. doi: 10.1016/j.conbuildmat.2025.139930
|
|
Peng, P., She, D., 2014. Isolation, structural characterization, and potential applications of hemicelluloses from bamboo: a review. Carbohydr. Polym. 112, 701–720. doi: 10.1016/j.carbpol.2014.06.068
|
|
Raviduth, R., 2024. In situ durability assessment of natural composite structures by considering artificial neural network (ANN) modelling. In: Fowdur, T.P., Rosunee, S., Ah King, R.T.F., Jeetah, P., Gooroochurn, M. (Eds.), Artificial Intelligence, Engineering Systems and Sustainable Development. Emerald Publishing Limited, Leeds, England, pp. 219–230.
|
|
Ren, W.T., Zhang, D.S., Zhou, Y., Wang, H., Xia, L.M., Tan, C.S., Guo, F., Zhang, X.X., Yang, R.L., Yu, Y., 2024. Lignin's complex role in lignocellulosic biomass recalcitrance: a case study on bamboo. Chem. Eng. J. 490, 151422. doi: 10.1016/j.cej.2024.151422
|
|
Ronald Aseer, J., Sankaranarayanasamy, K., Renold Elsen, S., Thakur, A.K., 2022. Experimental studies on water absorption properties of acetic acid treated banana fiber composites. Mater. Today Proc. 49, 453–456. doi: 10.1016/j.matpr.2021.02.518
|
|
Schmidt, G., Stute, T., Lenz, M.T., Melcher, E., Ressel, J.B., 2020. Fungal deterioration of a novel scrimber composite made from industrially heat treated African highland bamboo. Ind. Crops Prod. 147, 112225. doi: 10.1016/j.indcrop.2020.112225
|
|
Sen, S., Patil, S., Argyropoulos, D.S., 2015. Thermal properties of lignin in copolymers, blends, and composites: a review. Green Chem. 17, 4862–4887. doi: 10.1039/C5GC01066G
|
|
Shangguan, W.W., Gong, Y.C., Zhao, R.J., Ren, H.Q., 2016. Effects of heat treatment on the properties of bamboo scrimber. J. Wood Sci. 62, 383–391. doi: 10.1007/s10086-016-1574-3
|
|
Shi, J.J., Yuan, S.F., Zhang, W.F., Zhang, J., Chen, H., 2023. Hydrothermal aging mechanisms and service life prediction of twisted bamboo fiber wound composites. Mater. Des. 227, 111716. doi: 10.1016/j.matdes.2023.111716
|
|
Su, N., Fang, C.H., Zhou, H., Tang, T., Zhang, S.Q., Fei, B.H., 2021. Hydrophobic treatment of bamboo with rosin. Constr. Build. Mater. 271, 121507. doi: 10.1016/j.conbuildmat.2020.121507
|
|
Tang, Q.H., Chen, Y.Q., Yang, H.P., Liu, M., Xiao, H.Y., Wang, S.R., Chen, H.P., Raza Naqvi, S., 2021. Machine learning prediction of pyrolytic gas yield and compositions with feature reduction methods: effects of pyrolysis conditions and biomass characteristics. Bioresour. Technol. 339, 125581. doi: 10.1016/j.biortech.2021.125581
|
|
Tang, T., Fang, C.H., Sui, Z., Fu, C.L., Li, X.L., 2025. Hygrothermal treatment improves the dimensional stability and visual appearance of round bamboo. Polymers (Basel) 17, 747. doi: 10.3390/polym17060747
|
|
Vuković, F., Walsh, T.R., 2020. Moisture ingress at the molecular scale in hygrothermal aging of fiber-epoxy interfaces. ACS Appl. Mater. Interfaces 12, 55278–55289. doi: 10.1021/acsami.0c17027
|
|
Wang, H.H., Wang, X., Cui, Y.S., Xue, Z.C., Ba, Y.X., 2018. Slow pyrolysis polygeneration of bamboo (Phyllostachys pubescens): product yield prediction and biochar formation mechanism. Bioresour. Technol. 263, 444–449. doi: 10.1016/j.biortech.2018.05.040
|
|
Wang, X.K., Zhang, S.Q., Chen, L., Huang, B., Fang, C.H., Ma, X.X., Liu, H.R., Sun, F.B., Fei, B.H., 2022. Effects of pith ring on the hygroscopicity and dimensional stability of bamboo. Ind. Crops Prod. 184, 115027. doi: 10.1016/j.indcrop.2022.115027
|
|
Wei, X., Chen, Z.J., Li, L., Qin, Z.K., Wang, G., 2025. Bamboo as a substitute for plastic: effects of moisture content on the flexibility and flexural toughness of bamboo with cellulose fibers at multiple scales. Int. J. Biol. Macromol. 305, 141193. doi: 10.1016/j.ijbiomac.2025.141193
|
|
Wei, X., Wang, G., Smith, L.M., Jiang, H., 2021. The hygroscopicity of moso bamboo (Phyllostachys edulis) with a gradient fiber structure. J. Mater. Res. Technol. 15, 4309–4316. doi: 10.1016/j.jmrt.2021.10.038
|
|
Youssefian, S., Jakes, J.E., Rahbar, N., 2017. Variation of nanostructures, molecular interactions, and anisotropic elastic moduli of lignocellulosic cell walls with moisture. Sci. Rep. 7, 2054. doi: 10.1038/s41598-017-02288-w
|
|
Yuan, J., Chen, L., Mi, B.B., Lei, Y.F., Yan, L., Fei, B.H., 2023. Synergistic effects of bamboo cells during shrinkage process. Ind. Crops Prod. 193, 116232. doi: 10.1016/j.indcrop.2022.116232
|
|
Yuan, J., Chen, Q., Fang, C.H., Zhang, S.Q., Liu, X.M., Fei, B.H., 2021a. Effect of chemical composition of bamboo fibers on water sorption. Cellulose 28, 7273–7282. doi: 10.1007/s10570-021-03988-3
|
|
Yuan, J., Fang, C.H., Chen, Q., Fei, B.H., 2021b Observing bamboo dimensional change caused by humidity. Constr. Build. Mater. 309, 124988. doi: 10.1016/j.conbuildmat.2021.124988
|
|
Zhang, X.X., Li, J., Yu, Y., Wang, H.K., 2018. Investigating the water vapor sorption behavior of bamboo with two sorption models. J. Mater. Sci. 53, 8241–8249. doi: 10.1007/s10853-018-2166-y
|
|
Zhang, Y.H., Ma, H.X., Qi, Y., Zhu, R.X., Li, X.W., Yu, W.J., Rao, F., 2022. Study of the long-term degradation behavior of bamboo scrimber under natural weathering. NPJ Mater. Degrad. 6, 63. doi: 10.1038/s41529-022-00273-x
|
|
Zhang, Y.M., Huang, X.A., Yu, Y.L., Yu, W.J., 2019. Effects of internal structure and chemical compositions on the hygroscopic property of bamboo fiber reinforced composites. Appl. Surf. Sci. 492, 936–943. doi: 10.1016/j.apsusc.2019.05.279
|
|
Zhao, X., Ye, H.Z., Chen, F.M., Wang, G., 2024. Bamboo as a substitute for plastic: research on the application performance and influencing mechanism of bamboo buttons. J. Clean. Prod. 446, 141297. doi: 10.1016/j.jclepro.2024.141297
|
|
Zhu, J.W., Wang, H.K., Guo, F., Salmén, L., Yu, Y., 2021. Cell wall polymer distribution in bamboo visualized with in situ imaging FTIR. Carbohydr. Polym. 274, 118653. doi: 10.1016/j.carbpol.2021.118653
|
|
Zhu, Y., Guan, M.J., Jia, Q.D., Wang, G.N., Pan, L.C., Li, Y.J., 2024. Degradation mechanism of cuticular wax composition and surface properties of bamboo culm during storage. Ind. Crops Prod. 214, 118558. doi: 10.1016/j.indcrop.2024.118558
|