Volume 10 Issue 4
Nov.  2025
Turn off MathJax
Article Contents
M-Haidar Ali Dali, Mohamed Hamid Salim, Malak AbuZaid, Maryam Omar Subhi Qassem, Faisal Al Marzooqi, Andrea Ceriani, Alessandro Decarlis, Ludovic Francis Dumée, Blaise Leopold Tardy. Evaluating nanocellulose from food waste as a functional amendment for sandy soils: Linking fiber structure to water dynamics, soil mechanics, and plant-microbes interactions ✩[J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 513-529. doi: 10.1016/j.jobab.2025.09.003
Citation: M-Haidar Ali Dali, Mohamed Hamid Salim, Malak AbuZaid, Maryam Omar Subhi Qassem, Faisal Al Marzooqi, Andrea Ceriani, Alessandro Decarlis, Ludovic Francis Dumée, Blaise Leopold Tardy. Evaluating nanocellulose from food waste as a functional amendment for sandy soils: Linking fiber structure to water dynamics, soil mechanics, and plant-microbes interactions [J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 513-529. doi: 10.1016/j.jobab.2025.09.003

Evaluating nanocellulose from food waste as a functional amendment for sandy soils: Linking fiber structure to water dynamics, soil mechanics, and plant-microbes interactions

doi: 10.1016/j.jobab.2025.09.003
More Information
  • Corresponding author: E-mail address: mohamed.hsalim@ku.ac.ae (M.H. Salim); E-mail address: blaise.tardy@ku.ac.ae (B.L. Tardy)
  • Received Date: 2025-05-21
  • Accepted Date: 2025-09-04
  • Rev Recd Date: 2025-08-10
  • Available Online: 2025-09-20
  • Publish Date: 2025-11-01
  • Micro and nanofibers have the ability to imbue control over water transport properties and mechanical cohesion to granular materials. These key characteristics are proportional to the fiber size, if finely tuned, and can enable soils to more effectively host life. Typically, requirements include a high organic matter content, a rich microbiome, and especially physico-chemical properties conducive to water dynamics. Herein, we developed mechanochemical processes to fibrillate food-waste-based biomass (namely, peels) into a range of fiber solutions. Macrofibers and nanofibers were obtained via mild processing steps and were fully characterized, the relation between the morphology as well as physico-chemical properties of the fibers was thoroughly studied. Three sand types associated with deserts were evaluated for their potential benefits from the fiber amendments. The compressive response of the amended soils and, more importantly, their water holding, water permeability, and evaporation rate were thoroughly evaluated. The resistance of reinforced soil matrices to biodegradation and dry-wet cycling was also used to evaluate long-term performance. Finally, this study provides an outlook on nutrient retention for agricultural endeavors as a function of fiber amendment type and content.

     

  • Author contributions
    Experimental work: M-Hidar Ali Al Dali, Mohamed Hamid Salim.
    Formal analysis: M-Hidar Ali Al Dali, Mohamed Hamid Salim, Malak AbuZaid, Maryam O. Qassem, Blaise L. Tardy.
    Writing – original draft: M-Hidar Ali Al Dali, Mohamed Hamid Salim, Malak AbuZaid, Maryam O. Qassem, Ludovic F. Dumee, Blaise L. Tardy.
    Writing – review & editing: M-Hidar Ali Al Dali, Mohamed Hamid Salim, Malak AbuZaid, Maryam O. Qassem, Faisal Al Marzooqi, Andrea Ceriani, Alessandro Decarlis, Ludovic F. Dumee, Blaise L. Tardy.
    Supervision: Mohamed Hamid Salim, Faisal Al Marzooqi, Ludovic F. Dumee, Blaise L. Tardy.
    Investigation: Mohamed Hamid Salim.
    Conceptualization: Blaise L. Tardy.
    Methodology: Blaise L. Tardy.
    Funding acquisition: Blaise L. Tardy.
    Declaration of Competing Interest
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2025.09.003
    Peer review under the responsibility of Editorial Office of Journal of Bioresources and Bioproducts.
  • loading
  • Abdallah, M., Shanableh, A., Arab, M., Shabib, A., Adghim, M., El-Sherbiny, R., 2019. Waste to energy potential in middle income countries of MENA region based on multi-scenario analysis for Kafr El-Sheikh Governorate, Egypt. J. Environ. Manag. 232, 58–65.
    Al-Obadi, M., Ayad, H., Pokharel, S., Ayari, M.A., 2022. Perspectives on food waste management: prevention and social innovations. Sustain. Prod. Consum. 31, 190–208.
    Arboit, F., Steuber, T., Mohamad, K., Alsuwaidi, M., Ceriani, A., 2022. Lost in the wind: an integrated approach for the recognition of mixed clastic-carbonate continental aeolianites. Sedimentology 69, 2203–2227. doi: 10.1111/sed.12989
    Awad, S., Zhou, Y.H., Katsou, E., Li, Y.F., Fan, M.Z., 2021. A critical review on date palm tree (Phoenix dactylifera L.) fibres and their uses in bio-composites. Waste Biomass Valorizat. 12, 2853–2887. doi: 10.1007/s12649-020-01105-2
    Benaafi, M., Abdullatif, O., 2015. Sedimentological, mineralogical, and geochemical characterization of sand dunes in Saudi Arabia. Arab. J. Geosci. 8, 11073–11092. doi: 10.1007/s12517-015-1970-9
    Camenzind, T., Aguilar-Trigueros, C.A., Hempel, S., Lehmann, A., Bielcik, M., Andrade-Linares, D.R., Bergmann, J., Dela Cruz, J., Gawronski, J., Golubeva, P., Haslwimmer, H., Lartey, L., Leifheit, E., Maaß, S., Marhan, S., Pinek, L., Powell, J.R., Roy, J., Veresoglou, S.D., Wang, D.W., Wulf, A., Zheng, W.S., Rillig, M.C., 2024. Towards establishing a fungal economics spectrum in soil saprobic fungi. Nat. Commun. 15, 3321.
    da Costa, F.A.T., Dufresne, A., Song, T., Parra, D.F., 2025. Exploring acid hydrolysis conditions and extended mechanical processing for producing cellulose nanocrystal and nanofibrils from pineapple leaf fibers. Int. J. Biol. Macromol. 306, 141755.
    Dai, H.J., Ou, S.Y., Huang, Y., Huang, H.H., 2018. Utilization of pineapple peel for production of nanocellulose and film application. Cellulose 25, 1743–1756. doi: 10.1007/s10570-018-1671-0
    Dali, M.A., Abidnejad, R., Salim, M.H., Bhattarai, M., Imani, M., Rojas, O.J., Greca, L.G., Tardy, B.L., 2024. Benchmarking the humidity-dependent mechanical response of (nano)fibrillated cellulose and dissolved polysaccharides as sustainable sand amendments. Biomacromolecules 25, 2367–2377. doi: 10.1021/acs.biomac.3c01294
    Diago, M., Iniesta, A.C., Soum-Glaude, A., Calvet, N., 2018. Characterization of desert sand to be used as a high-temperature thermal energy storage medium in particle solar receiver technology. Appl. Energy 216, 402–413.
    Ding, Q.J., Zeng, J.S., Wang, B., Tang, D.R., Chen, K.F., Gao, W.H., 2019. Effect of nanocellulose fiber hornification on water fraction characteristics and hydroxyl accessibility during dehydration. Carbohydr. Polym. 207, 44–51.
    Evans, S.K., Wesley, O.N., Nathan, O., Moloto, M.J., 2019. Chemically purified cellulose and its nanocrystals from sugarcane baggase: isolation and characterization. Heliyon 5, e02635.
    Fartyal, A., Bargali, S.S., Bargali, K., Negi, B., 2025. Changes in soil properties, organic carbon, and nutrient stocks after land-use change from forests to grasslands in kumaun Himalaya, India. Land Degrad. Dev. 36, 2438–2457. doi: 10.1002/ldr.5507
    Garzanti, E., Vermeesch, P., Andò, S., Vezzoli, G., Valagussa, M., Allen, K., Kadi, K.A., Al-Juboury, A.I.A., 2013. Provenance and recycling of Arabian desert sand. Earth Sci. Rev. 120, 1–19.
    Gonzalez, M., Pereira-Rojas, J., Villanueva, I., Agüero, B., Silva, I., Velasquez, I., Delgado, B., Hernandez, J., Rodriguez, G., Labrador, H., Barros, H., Pereira, J., 2022. Preparation and characterization of cellulose fibers from Meghatyrsus maximus: applications in its chemical derivatives. Carbohydr. Polym. 296, 119918.
    Govindharaj, M., Salim, M.H., Dali, M.A., Kaniyamparambil, S.H., Arya, S.S., Hathi, Z., Mettu, S., Lizundia, E., Pappa, A.M., Pitsalidis, C., Tardy, B.L., 2025. Multi-scaled cellulosic nanonetworks from tunicates. Adv. Funct. Mater. 35, 2422595.
    Guo, J.X., Zhang, D.J., Duan, C.G., Liu, C.B., 2010. Probing anion–cellulose interactions in imidazolium-based room temperature ionic liquids: a density functional study. Carbohydr. Res. 345, 2201–2205.
    Hamid Salim, M., Abdellaoui, Y., Mennani, M., Soumare, A., Díaz-Jimenéz, L., El Achaby, M., Kassab, Z., 2025. Active bio-nanocomposite films based on PVA filled with CNC and bio-active extract from onion skin waste. J. Appl. Polym. Sci. 142, e56705.
    Hietala, M., Sain, S., Oksman, K., 2017. Highly redispersible sugar beet nanofibers as reinforcement in bionanocomposites. Cellulose 24, 2177–2189. doi: 10.1007/s10570-017-1245-6
    Hua, L., Li, R.Z., Mu, R.H., Hou, H.Y., Ma, T.T., 2024. Molecular dynamics study on effects of the synergistic effect of anions and cations on the dissolution of cellulose in ionic liquids. J. Mol. Liq. 415, 126348.
    Jin, X.L., Chen, X.L., Shi, C.H., Li, M., Guan, Y.J., Yu, C.Y., Yamada, T., Sacks, E.J., Peng, J.H., 2017. Determination of hemicellulose, cellulose and lignin content using visible and near infrared spectroscopy in Miscanthus sinensis. Bioresour. Technol. 241, 603–609.
    Jo, C., Zhang, J., Tam, J.M., Church, G.M., Khalil, A.S., Segrè, D., Tang, T.C., 2023. Unlocking the magic in mycelium: using synthetic biology to optimize filamentous fungi for biomanufacturing and sustainability. Mater. Today Bio 19, 100560.
    Kabir, M.M., Wang, H., Lau, K.T., Cardona, F., 2013. Effects of chemical treatments on hemp fibre structure. Appl. Surf. Sci. 276, 13–23.
    Kaniyamparambil, S.H., Salim, M.H., Al Marzooqi, F., Mettu, S., Otoni, C.G., Banat, F., Tardy, B.L., 2025. A comprehensive study on the potential of edible coatings with polysaccharides, polyphenol, and lipids for mushroom preservation. Int. J. Biol. Macromol. 306, 141494.
    Kassab, Z., Daoudi, H., Salim, M.H., El Idrissi El Hassani, C., Abdellaoui, Y., El Achaby, M., 2024. Process-structure-property relationships of cellulose nanocrystals derived from Juncus effusus stems on ҡ-carrageenan-based bio-nanocomposite films. Int. J. Biol. Macromol. 265, 130892.
    Kumari, D., Prajapat, G., Goyal, S., Agrawal, A., 2023. Modification of desert sand to soil using polymers for its agricultural potential. J. Arid Environ. 209, 104899.
    Lal, R., 2016. Soil health and carbon management. Food Energy Secur. 5, 212–222. doi: 10.1002/fes3.96
    Lee, A.C., Salleh, M.M., Ibrahim, M.F., Bahrin, E.K., Jenol, M.A., Abd-Aziz, S., 2024. Pineapple peel as alternative substrate for bacterial nanocellulose production. Biomass Convers. Biorefin. 14, 5541–5549. doi: 10.1007/s13399-022-03169-7
    Lehmann, J., Bossio, D.A., Kögel-Knabner, I., Rillig, M.C., 2020. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 1, 544–553. doi: 10.1038/s43017-020-0080-8
    Lemboye, K., Almajed, A., Alnuaim, A., Arab, M., Alshibli, K., 2021. Improving sand wind erosion resistance using renewable agriculturally derived biopolymers. Aeolian Res. 49, 100663.
    Li, M.Y., Wang, J.L., Zhou, Q., Yasen, M., 2023. Effects of continuous melon cropping on rhizospheric fungal communities. Rhizosphere 27, 100726.
    Lima Lopes Junior, J., Rodrigues Brabo, D., Leandro Santos Amaral, E., Wilson da Cruz Reis, A., Bastos do Amarante, C., Gilda Barroso Tavares Dias, C., 2024. Characterization of the natural fibers extracted from the aninga’s stem and development of a unidirectional polymeric sheet. Sci. Rep. 14, 24780.
    Liu, Y.F., Ni, J.J., Gu, J.Y., Liu, S.S., Huang, Y., Sadeghi, H., 2024. Influence of biopolymer-vegetation interaction on soil hydro-mechanical properties under climate change: a review. Sci. Total Environ. 954, 176535.
    Mattos, B., Tardy, B.L., Rojas, O.J., 2019. Accounting for substrate interactions in the measurement of the dimensions of cellulose nanofibrils. Biomacromolecules 20, 2657–2665. doi: 10.1021/acs.biomac.9b00432
    Mattos, B.D., Tardy, B.L., Greca, L.G., Kämäräinen, T., Xiang, W., Cusola, O., Magalhães, W.L.E., Rojas, O.J., 2020. Nanofibrillar networks enable universal assembly of superstructured particle constructs. Sci. Adv. 6, eaaz7328.
    Mehraj, M., Das, S., Feroz, F., Waheed Wani, A., Dar, S.Q., Kumar, S., Wani, A.K., Farid, A., 2024. Nutritional composition and therapeutic potential of pineapple peel–a comprehensive review. Chem. Biodivers. 21, e202400315.
    Moon, R., Johnston, L., Land-Hensdal, C., Batchelor, W., 2025. Perspectives on cellulose nanofibril size measurement using scanning electron microscopy. Cellulose 32, 2793–2810. doi: 10.1007/s10570-025-06458-2
    Nagarajan, K.J., Sanjay, M.R., Sathick, B.K., Raghav, G.R., Ashok, K.R., Siengchin, S., Surya R.B., Sabari, N.P., Anish, K., 2022. Extraction of cellulose nanocrystals from red banana peduncle agro-waste and application in environmentally friendly biocomposite film. Polym. Compos. 43, 4942–4958.
    Najahi, A., Delgado-Aguilar, M., Putaux, J.L., Boufi, S., 2025. High-yield cellulose nanocrystals from bleached Eucalyptus Fibers via maleic acid hydrothermal treatment and high-pressure homogenization. Biomacromolecules 26, 1372–1385. doi: 10.1021/acs.biomac.4c01737
    Nomadolo, N., Dada, O.E., Swanepoel, A., Mokhena, T., Muniyasamy, S., 2022. A comparative study on the aerobic biodegradation of the biopolymer blends of poly(butylene succinate), poly(butylene adipate terephthalate) and poly(lactic acid). Polymers (Basel) 14, 1894. doi: 10.3390/polym14091894
    Omar, H., Alsharaeh, E., 2024. Improving water retention in sandy soils with high-performance superabsorbents hydrogel polymer. ACS Omega 9, 23531–23541. doi: 10.1021/acsomega.4c00727
    Pandey, R., Bargali, S.S., Bargali, K., Karki, H., Chaturvedi, R.K., 2024. Dynamics of nitrogen mineralization and fine root decomposition in sub-tropical Shorea robusta Gaertner f. forests of Central Himalaya, India Sci. Total Environ. 921, 170896.
    Pandey, R., Bargali, S.S., Bargali, K., Pandey, V.C., 2023. Temporal variability in fine root dynamics in relation to tree girth size in sub-tropical sal (Shorea robusta) forests. Land Degrad. Dev. 34, 1522–1537. doi: 10.1002/ldr.4550
    Pereira, P.H.F., Arantes, V., Pereira, B., Ornaghi, H.L., de Oliveira, D.M., Santagneli, S.H., Cioffi, M.O.H., 2022. Effect of the chemical treatment sequence on pineapple peel fiber: chemical composition and thermal degradation behavior. Cellulose 29, 8587–8598. doi: 10.1007/s10570-022-04806-0
    Pires, J.R.A., Souza, V.G.L., Fuciños, P., Pastrana, L., Fernando, A.L., 2022. Methodologies to assess the biodegradability of bio-based polymers-current knowledge and existing gaps. Polymers (Basel) 14, 1359. doi: 10.3390/polym14071359
    Prado, K.S., Spinacé, M.A.S., 2019. Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses. Int. J. Biol. Macromol. 122, 410–416.
    Qassem, M.O., Salim, M.H., Dali, M.H.A., Dumée, L.F., Vega, L., Kaniyamparambil, S.H., Chelaifa, H., Al Amoodi, N., Tardy, B.L., 2025. Slag from steel production as a versatile fertilizer: evaluation of ladle furnace slag in sandy soils and hydroponics. Environ. Technol. Innov. 37, 103954.
    Qu, J.H., Bi, F.X., Li, S.Z., Feng, Z.H., Li, Y.H., Zhang, G.S., Wang, L., Wang, Y.F., Zhang, Y., 2022. Microwave-assisted synthesis of polyethylenimine-grafted nanocellulose with ultra-high adsorption capacity for lead and phosphate scavenging from water. Bioresour. Technol. 362, 127819.
    Rabideau, B.D., Agarwal, A., Ismail, A.E., 2014. The role of the cation in the solvation of cellulose by imidazolium-based ionic liquids. J. Phys. Chem. B 118, 1621–1629. doi: 10.1021/jp4115755
    Raheb, A., Asgari Lajayer, B., Senapathi, V., 2023. The effect of short-term plants cultivation on soil organic/inorganic carbon storage in newly formed soils. Sci. Rep. 13, 18500.
    Raj, N., Selvakumar, S., Soundara, B., Kulanthaivel, P., 2023. Sustainable utilization of biopolymers as green adhesive in soil improvement: a review. Environ. Sci. Pollut. Res. Int. 30, 118117–118132. doi: 10.1007/s11356-023-30642-1
    Rajeshkumar, G., Hariharan, V., Devnani, G.L., Prakash Maran, J., Sanjay, M.R., Siengchin, S., Al-Dhabi, N.A., Ponmurugan, K., 2021. Cellulose fiber from date palm petioles as potential reinforcement for polymer composites: physicochemical and structural properties. Polym. Compos. 42, 3943–3953. doi: 10.1002/pc.26106
    Ros, G.H., Verweij, S.E., Janssen, S.J.C., De Haan, J., Fujita, Y., 2022. An open soil health assessment framework facilitating sustainable soil management. Environ. Sci. Technol. 56, 17375–17384. doi: 10.1021/acs.est.2c04516
    Sahu, H., Kumar, U., Mariappan, S., Mishra, A.P., Kumar, S., 2024. Impact of organic and inorganic farming on soil quality and crop productivity for agricultural fields: a comparative assessment. Environ. Chall. 15, 100903.
    Sanchez-Salvador, J.L., Monte, M.C., Batchelor, W., Garnier, G., Negro, C., Blanco, A., 2020. Characterizing highly fibrillated nanocellulose by modifying the gel point methodology. Carbohydr. Polym. 227, 115340.
    Shu, F., Guo, Y.J., Huang, L., Zhou, M.G., Zhang, G.Y., Yu, H., Zhang, J.H., Yang, F.X., 2022. Production of lignin-containing nanocellulose from poplar using ternary deep eutectic solvents pretreatment. Ind. Crops Prod. 177, 114404.
    Singh, A., Kumar, A., Yadav, R.K., Minhas, P.S., Saini, U., 2022. Long-term effect of alkali and partially neutralized irrigation water on soil quality. J. Soil Sci. Plant Nutr. 22, 1252–1266. doi: 10.1007/s42729-021-00728-1
    Singh, J.K., Rout, A.K., 2024. Characterization of raw and alkali-treated cellulosic fibers extracted from Borassus flabellifer L. Biomass Convers. Biorefin. 14, 11633–11646. doi: 10.1007/s13399-022-03238-x
    Sokol, N.W., Slessarev, E., Marschmann, G.L., Nicolas, A., Blazewicz, S.J., Brodie, E.L., Firestone, M.K., Foley, M.M., Hestrin, R., Hungate, B.A., Koch, B.J., Stone, B.W., Sullivan, M.B., Zablocki, O., Pett-Ridge, J., 2022. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 20, 415–430. doi: 10.1038/s41579-022-00695-z
    Srinivasan, S., Venkatachalam, S., 2024. One pot green process for facile fractionation of sorghum biomass to lignin, cellulose and hemicellulose nanoparticles using deep eutectic solvent. Int. J. Biol. Macromol. 277, 134295.
    Tardy, B.L., Dali, M.H.A.A., Salim, M.H., Mabrook, G.M.F. Substrates for plant growth and infrastructure: US20240358024A1. 2023a. https://patents.google.com/patent/US20240358024A1/en.
    Tardy, B.L., Greca, L.G., Mihhels, K., Lizundia, E., Dumee, L.F., Vega, L.F., 2023b. Integrating arid areas in the global bioeconomy: opportunities and challenges toward sustainable biomass generation and management. ACS Sustain. Chem. Eng. 11, 12177–12193. doi: 10.1021/acssuschemeng.3c01853
    Tian, Y.Q., Huang, R.Y., Chen, Y.Y., Wang, T., Wu, J.L., Wang, S.Y., 2025. The preparation and characterization of pineapple peel cellulose nanofibers and its application in oil-water emulsions. Carbohydr. Polym. 353, 123245.
    Vijayakkannan, K., Rajendran, I., 2024. Extraction and characterization of a new natural cellulosic fiber from the habara plant stem (HF) as potential reinforcement for polymer composites. Int. J. Biol. Macromol. 269, 131818.
    Wang, Y.G., Li, Y., Ye, X.H., Chu, Y., Wang, X.P., 2010. Profile storage of organic/inorganic carbon in soil: from forest to desert. Sci. Total Environ. 408, 1925–1931.
    Yang, Y.M., Zhong, M.Y., Bian, X.Q., You, Y.J., Li, F.Y., 2023. Preparation of carbon-based material with high water absorption capacity and its effect on the water retention characteristics of sandy soil. Biochar 5, 61.
    Zhang, B., Horn, R., Hallett, P.D., 2005. Mechanical resilience of degraded soil amended with organic matter. Soil Sci. Soc. Am. J. 69, 864–871. doi: 10.2136/sssaj2003.0256
    Zhang, J.R., Liu, J.H., Cheng, Y., Jiang, T., Sun, D.A., Saberian, M., 2023. Water-retention behaviour and microscopic analysis of two biopolymer-improved sandy soils. Constr. Build. Mater. 403, 133202.
    Zhou, C., So, P.S., Chen, X.W., 2020. A water retention model considering biopolymer-soil interactions. J. Hydrol. 586, 124874.
    Zhu, H., Cheng, J.H., Han, Z.R., 2024a. Construction of a sustainable and hydrophobic high-performance all-green pineapple peel cellulose nanocomposite film for food packaging. Int. J. Biol. Macromol. 256, 128396.
    Zhu, H., Wang, R.L., Cheng, J.H., Keener, K.M., 2024b. Engineering pineapple peel cellulose nanofibrils with oxidase-mimic functionalities for antibacterial and fruit preservation. Food Chem. 451, 139417.
    Zhuo, X., Liu, C., Pan, R.T., Dong, X.Y., Li, Y.F., 2017. Nanocellulose mechanically isolated from Amorpha fruticosa Linn. ACS Sustain. Chem. Eng. 5, 4414–4420. doi: 10.1021/acssuschemeng.7b00478
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (19) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return