Volume 10 Issue 4
Nov.  2025
Turn off MathJax
Article Contents
Jongbeom Park, Woo-Young Jeon, Min-Jeong Jang, Hye-Jeong Lee, Sung-Hwa Seo, Young-Su Kim, HyunA Park, Kyung Taek Heo, Bashu Dev Pardhe, Hyunju Kim, Dongjun Park, Ik-Sung Ahn, Ye Won Bae, Hee Cheol Kang, Jae Woo Chung, Soon Ho Jang, Jung-Oh Ahn. An end-to-end microbial platform for 100% bio-based long-chain polyester: From renewable substrate to eco-friendly polymer[J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 530-544. doi: 10.1016/j.jobab.2025.09.005
Citation: Jongbeom Park, Woo-Young Jeon, Min-Jeong Jang, Hye-Jeong Lee, Sung-Hwa Seo, Young-Su Kim, HyunA Park, Kyung Taek Heo, Bashu Dev Pardhe, Hyunju Kim, Dongjun Park, Ik-Sung Ahn, Ye Won Bae, Hee Cheol Kang, Jae Woo Chung, Soon Ho Jang, Jung-Oh Ahn. An end-to-end microbial platform for 100% bio-based long-chain polyester: From renewable substrate to eco-friendly polymer[J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 530-544. doi: 10.1016/j.jobab.2025.09.005

An end-to-end microbial platform for 100% bio-based long-chain polyester: From renewable substrate to eco-friendly polymer

doi: 10.1016/j.jobab.2025.09.005
More Information
  • Corresponding author: E-mail address: shjang@textile.or.kr (S.H. Jang); E-mail address: ahnjo@kribb.re.kr (J.-O. Ahn)
  • Received Date: 2025-05-27
  • Accepted Date: 2025-09-10
  • Rev Recd Date: 2025-05-29
  • Available Online: 2025-10-01
  • Publish Date: 2025-11-01
  • The development of sustainable, eco-friendly polyesters from renewable resources is crucial for reducing dependence on petroleum-based plastics. However, despite advances in microbial production of bioplastics, significant challenges remain in achieving high conversion efficiency and scalability for industrial applications. This study is the first to report the synthesis of a 100% bio-based polyester using both 1,12-dodecanedioic acid (1,12-diacid) and 1,12-dodecanediol (1,12-diol) via a two-step microbial bioconversion from a single plant oil-derived alkane. An engineered Candida tropicalis strain produced 150 g/L of 1,12-diacid with a productivity of 1.53 g/(L·h) in a 5 L fed-batch system using a two-phase biotransformation strategy. Escherichia coli engineered to express carboxylic acid reductase, which reduces carboxylic acids to aldehydes, and its activation enzyme phosphopantetheinyl transferase, converted 1,12-diacid into 68 g/L 1,12-diol with a productivity of 1.42 g/(L·h) in a 5 L fed-batch system, representing high titer and productivity for microbial production of long-chain α,ω-diols. Both monomer production processes were successfully scaled up to a 50 L pilot fermenter, validating their potential for industrial implementation. A highly efficient downstream purification process was developed, achieving > 98% purity and recovery rates for both monomers. The bio-derived monomers enabled the synthesis of polyesters with molecular weight and thermal characteristics similar to petroleum-based monomers of the same chemical structure. This integrated approach establishes a robust and scalable microbial platform that converts renewable lipid feedstocks into fully bio-based polyesters, thereby demonstrating an environmentally sustainable and industrially viable route to circular bioeconomy-based polyester production.

     

  • Authorship contributions
    Conceptualization: Jongbeom Park. Data curation: Jongbeom Park, Hye-Jeong Lee, Kyung Taek Heo, Hyunju Kim. Writing: Jongbeom Park, Hyunju Kim, Soon Ho Jang. Validation: Woo-Young Jeon, Young-Su Kim, Bashu Dev Pardhe, Jae Woo Chung, Jung-Oh Ahn. Editing: Woo-Young Jeon, Bashu Dev Pardhe. Experiment: Min-Jeong Jang, Sung-Hwa Seo, HyunA Park, Dongjun Park, Ye Won Bae. Supervision: Ik-Sung Ahn, Soon Ho Jang, Jung-Oh Ahn. Characterization: Hee Cheol Kang.
    Declaration of Competing Interest
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Supplementary materials
    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jobab.2025.09.005
    Peer review under the responsibility of Editorial Office of Journal of Bioresources and Bioproducts.
  • loading
  • Ahsan, M.M., Sung, S., Jeon, H., Patil, M.D., Chung, T., Yun, H., 2018. Biosynthesis of medium- to long-chain α,ω-diols from free fatty acids using CYP153A monooxygenase, carboxylic acid reductase, and E. coli endogenous aldehyde reductases. Catalysts 8, 4.
    Ajeeb, W., Gomes, D.M., Neto, R.C., Baptista, P., 2025. Life cycle analysis of hydrotreated vegetable oils production based on green hydrogen and used cooking oils. Fuel 390, 134749.
    Akhtar, M.K., Turner, N.J., Jones, P.R., 2013. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc. Natl. Acad. Sci. USA 110, 87–92. doi: 10.1073/pnas.1216516110
    Ammala, A., Bateman, S., Dean, K., Petinakis, E., Sangwan, P., Wong, S., Yuan, Q., Yu, L., Patrick, C., Leong, K.H., 2011. An overview of degradable and biodegradable polyolefins. Prog. Polym. Sci. 36, 1015–1049.
    Bautista-Quijano, J.R., Telschow, O., Paulus, F., Vaynzof, Y., 2023. Solvent–antisolvent interactions in metal halide perovskites. Chem. Commun. 59, 10588–10603. doi: 10.1039/d3cc02090h
    Blommel, P.G., Becker, K.J., Duvnjak, P., Fox, B.G., 2007. Enhanced bacterial protein expression during auto-induction obtained by alteration of lac repressor dosage and medium composition. Biotechnol. Prog. 23, 585–598.
    Cao, Z., Gao, H., Liu, M., Jiao, P., 2006. Engineering the acetyl-CoA transportation system of Candida tropicalis enhances the production of dicarboxylic acid. Biotechnol. J. 1, 68–74. doi: 10.1002/biot.200500008
    Cao, W.F., Wang, Y.J., Luo, J.Q., Yin, J.X., Wan, Y.H., 2018. Improving α,ω-dodecanedioic acid productivity from n-dodecane and hydrolysate of Candida cells by membrane integrated repeated batch fermentation. Bioresour. Technol. 260, 9–15.
    Cha, T.Y., Yong, Y., Park, H., Yun, H.J., Jeon, W., Ahn, J.O., Choi, K.Y., 2021. Biosynthesis of C12 fatty alcohols by whole cell biotransformation of C12 derivatives using Escherichia coli two-cell systems expressing CAR and ADH. Biotechnol. Bioprocess Eng. 26, 392–401. doi: 10.1007/s12257-020-0239-7
    Chen, S., Zhou, G.L., Miao, C.X., 2019. Green and renewable bio-diesel produce from oil hydrodeoxygenation: strategies for catalyst development and mechanism. Renew. Sustain. Energy Rev. 101, 568–589. doi: 10.3390/w11030568
    Craft, D.L., Madduri, K.M., Eshoo, M., Wilson, C.R., 2003. Identification and characterization of the CYP52 family of Candida tropicalis ATCC 20336, important for the conversion of fatty acids and alkanes to α,ω-dicarboxylic acids. Appl. Environ. Microbiol. 69, 5983–5991.
    Cristóbal, J., Federica Albizzati, P., Giavini, M., Caro, D., Manfredi, S., Tonini, D., 2023. Management practices for compostable plastic packaging waste: impacts, challenges and recommendations. Waste Manag. 170, 166–176.
    de Mello, A.F.M., de Souza Vandenberghe, L.P., Herrmann, L.W., Letti, L.A.J., Burgos, W.J.M., Scapini, T., Manzoki, M.C., de Oliveira, P.Z., Soccol, C.R., 2024. Strategies and engineering aspects on the scale-up of bioreactors for different bioprocesses. Syst. Microbiol. Biomanuf. 4, 365–385. doi: 10.1007/s43393-023-00205-z
    de Miranda, A.S., Milagre, C.D.F., Hollmann, F., 2022. Alcohol dehydrogenases as catalysts in organic synthesis. Front. Catal. 2, 900554.
    Dewi, H.P., Mustikasari, K., Astuti, M.D., Husain, S., 2022. Selective hydroconversion of coconut oil-derived lauric acid to alcohol and aliphatic alkane over MoOx-modified Ru catalysts under mild conditions. RSC Adv 12, 13319–13329.
    Diederichs, S., Korona, A., Staaden, A., Kroutil, W., Honda, K., Ohtake, H., Büchs, J., 2014. Phenotyping the quality of complex medium components by simple online-monitored shake flask experiments. Microb. Cell Fact. 13, 149.
    Duan, H.H., Dong, J.C., Gu, X.R., Peng, Y.K., Chen, W.X., Issariyakul, T., Myers, W.K., Li, M.J., Yi, N., Kilpatrick, A.F.R., Wang, Y., Zheng, X.S., Ji, S.F., Wang, Q., Feng, J.T., Chen, D.L., Li, Y.D., Buffet, J.C., Liu, H.C., Tsang, S.C.E., O’Hare, D., 2017. Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd-Mo catalyst. Nat. Commun. 8, 591.
    Fernandez-Moya, R., Da Silva, N.A., 2017. Engineering saccharomyces cerevisiae for high-level synthesis of fatty acids and derived products. FEMS Yeast Res 17.
    Fujii, T., Narikawa, T., Sumisa, F., Arisawa, A., Takeda, K., Kato, J., 2006. Production of α,ω-alkanediols using Escherichia coli expressing a cytochrome P450 from Acinetobacter sp. OC4. Biosci. Biotechnol. Biochem. 70, 1379–1385. doi: 10.1271/bbb.50656
    Gahloth, D., Aleku, G.A., Leys, D., 2020. Carboxylic acid reductase: structure and mechanism. J. Biotechnol. 307, 107–113.
    Garcia-Ochoa, F., Gomez, E., 2009. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol. Adv. 27, 153–176.
    Guo, Q.J., Wu, M., Wang, K., Zhang, L., Xu, X.F., 2015. Catalytic hydrodeoxygenation of algae bio-oil over bimetallic Ni–Cu/ZrO2 catalysts. Ind. Eng. Chem. Res. 54, 890–899. doi: 10.1021/ie5042935
    Han, L., Peng, Y.F., Zhang, Y., Chen, W.J., Lin, Y.P., Wang, Q.H., 2017. Designing and creating a synthetic omega oxidation pathway in Saccharomyces cerevisiae enables production of medium-chain α,ω-dicarboxylic acids. Front. Microbiol. 8, 2184.
    Hansen, C.M., 2007. Hansen Solubility Parameters: A User’s Handbook. CRC Press, Boca Raton.
    Honda Malca, S., Scheps, D., Kühnel, L., Venegas-Venegas, E., Seifert, A., Nestl, B.M., Hauer, B., 2012. Bacterial CYP153A monooxygenases for the synthesis of omega-hydroxylated fatty acids. Chem. Commun. 48, 5115–5117. doi: 10.1039/c2cc18103g
    Hsieh, S.C., Wang, J.H., Lai, Y.C., Su, C.Y., Lee, K.T., 2018. Production of 1-dodecanol, 1-tetradecanol, and 1,12-dodecanediol through whole-cell biotransformation in Escherichia coli. Appl. Environ. Microbiol. 84, e01806–17.
    Jeon, W.Y., Jang, M.J., Park, G.Y., Lee, H.J., Seo, S.H., Lee, H.S., Han, C., Kwon, H., Lee, H.C., Lee, J.H., Hwang, Y.T., Lee, M.O., Lee, J.G., Lee, H.W., Ahn, J.O., 2019. Microbial production of sebacic acid from a renewable source: production, purification, and polymerization. Green Chem. 21, 6491–6501. doi: 10.1039/c9gc02274k
    Jiao, P., Huang, Y.M., Li, S.L., Hua, Y.T., Cao, Z.A., 2001. Effects and mechanisms of H2O2 on production of dicarboxylic acid. Biotechnol. Bioeng. 75, 456–462.
    Lee, H., Han, C., Lee, H.W., Park, G., Jeon, W., Ahn, J., Lee, H., 2018. Development of a promising microbial platform for the production of dicarboxylic acids from biorenewable resources. Biotechnol. Biofuels 11, 310.
    Lee, S.M., Lee, J.Y., Hahn, J.S., Baek, S.H., 2024. Engineering of Yarrowia lipolytica as a platform strain for producing adipic acid from renewable resource. Bioresour. Technol. 391, 129920.
    Letcher, T., 2020. Plastic waste and recycling. Environmental Impact, Societal Issues, Prevention, and Solutions. Academic Press, London.
    Li, Z.Y., Xu, X.W., Jiang, E.C., Han, P., Sun, Y., Zhou, L., Zhong, P.D., Fan, X.D., 2020. Alkane from hydrodeoxygenation (HDO) combined with in situ multistage condensation of biomass continuous pyrolysis bio-oil via mixed supports catalyst Ni/HZSM-5-γ-Al2O3. Renew. Energy 149, 535–548.
    Liu, S.C., Li, C., Fang, X.C., Cao, Z.A., 2004. Optimal pH control strategy for high-level production of long-chain α,ω-dicarboxylic acid by Candida tropicalis. Enzyme Microb. Technol. 34, 73–77.
    Liu, C., Liu, F., Cai, J.L., Xie, W.C., Long, T.E., Turner, S.R., Lyons, A., Gross, R.A., 2011. Polymers from fatty acids: poly(ω-hydroxyl tetradecanoic acid) synthesis and physico-mechanical studies. Biomacromolecules 12, 3291–3298. doi: 10.1021/bm2007554
    Liu, H.H., Song, Y.L., Fan, X., Wang, C., Lu, X.Y., Tian, Y., 2021. Yarrowia lipolytica as an oleaginous platform for the production of value-added fatty acid-based bioproducts. Front. Microbiol. 11, 608662.
    Liu, X.L., Wang, Z.W., Xiao, J.J., Zhou, X., Xu, Y., 2022. Osmotic stress tolerance and transcriptome analysis of gluconobacter oxydans to extra-high titers of glucose. Front. Microbiol. 13, 977024.
    Lu, W.H., Ness, J.E., Xie, W.C., Zhang, X.Y., Minshull, J., Gross, R.A., 2010. Biosynthesis of monomers for plastics from renewable oils. J. Am. Chem. Soc. 132, 15451–15455. doi: 10.1021/ja107707v
    Lu, J., Wu, L.B., Li, B.G., 2017. High molecular weight polyesters derived from biobased 1,5-pentanediol and a variety of aliphatic diacids: synthesis, characterization, and thermo-mechanical properties. ACS Sustainable Chem. Eng. 5, 6159–6166. doi: 10.1021/acssuschemeng.7b01050
    Mailaram, S., Maity, S.K., 2019. Techno-economic evaluation of two alternative processes for production of green diesel from karanja oil: a pinch analysis approach. J. Renew. Sustain. Energy 11, 025906.
    Moshood, T.D., Nawanir, G., Mahmud, F., Mohamad, F., Ahmad, M.H., AbdulGhani, A., 2022. Biodegradable plastic applications towards sustainability: a recent innovations in the green product. Clean. Eng. Technol. 6, 100404.
    Muñoz-Arjona, A., Ayala-Cortés, A., Di Stasi, C., Torres, D., Pinilla, J.L., Suelves, I., 2025. Catalytic hydrodeoxygenation of waste cooking oil into green diesel range hydrocarbons: from batch to continuous processing. Chem. Eng. J. 503, 158303.
    Napora-Wijata, K., Strohmeier, G.A., Winkler, M., 2014. Biocatalytic reduction of carboxylic acids. Biotechnol. J. 9, 822–843. doi: 10.1002/biot.201400012
    Notley-McRobb, L., Death, A., Ferenci, T., 1997. The relationship between external glucose concentration and cAMP levels inside Escherichia coli: implications for models of phosphotransferase-mediated regulation of adenylate cyclase. Microbiology 143, 1909–1918. doi: 10.1099/00221287-143-6-1909
    Park, H., Bak, D., Jeon, W., Jang, M., Ahn, J.O., Choi, K.Y., 2022. Engineering of CYP153A33 with enhanced ratio of hydroxylation to overoxidation activity in whole-cell biotransformation of medium-chain 1-alkanols. Front. Bioeng. Biotechnol. 9, 817455.
    Park, G., Kim, Y.C., Jang, M., Park, H., Lee, H.W., Jeon, W., Kim, B.G., Choi, K.Y., Ahn, J., 2023. Biosynthesis of aliphatic plastic monomers with amino residues in Yarrowia lipolytica. Front. Bioeng. Biotechnol. 10, 825576.
    Picataggio, S., Rohrer, T., Deanda, K., Lanning, D., Reynolds, R., Mielenz, J., Eirich, L.D., 1992. Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxylic acids. Biotechnology 10, 894–898.
    Pirner, C.S., Palmer, N.A., Reizman, I.M.B., 2022. Techno-economic assessment of a bioprocess for long-chain dicarboxylic acid production from vegetable oils: a case study for distillers corn oil. Biomass Convers. Biorefin.: 1–13.
    Rizzo, W.B., 2014. Fatty aldehyde and fatty alcohol metabolism: review and importance for epidermal structure and function. Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipds. 1841, 377–389.
    Samir, A., Ashour, F.H., Abdel Hakim, A.A., Bassyouni, M., 2022. Recent advances in biodegradable polymers for sustainable applications. NPJ Mater. Degrad. 6, 68.
    Schaffer, S., Haas, T., 2014. Biocatalytic and fermentative production of α,ω-bifunctional polymer precursors. Org. Process Res. Dev. 18, 752–766. doi: 10.1021/op5000418
    Shahid, A.T., Hofmann, M.A., Silvestre, J.D., Garrido, M., Correia, J.R., 2025. Life cycle assessment of novel partially bio-based unsaturated polyester resins. J. Polym. Environ. 33, 3329–3347. doi: 10.1007/s10924-025-03596-3
    Sophos, N.A., Vasiliou, V., 2003. Aldehyde dehydrogenase gene superfamily: the 2002 update. Chem. Biol. Interact. 143/144, 5–22.
    Stempfle, F., Ortmann, P., Mecking, S., 2016. Long-chain aliphatic polymers to bridge the gap between semicrystalline polyolefins and traditional polycondensates. Chem. Rev. 116, 4597–4641. doi: 10.1021/acs.chemrev.5b00705
    Sung, S., Jeon, H., Sarak, S., Ahsan, M.M., Patil, M.D., Kroutil, W., Kim, B.G., Yun, H., 2018. Parallel anti-sense two-step cascade for alcohol amination leading to ω-amino fatty acids and α,ω-diamines. Green Chem. 20, 4591–4595. doi: 10.1039/c8gc02122h
    Tahara, N., Tachibana, I., Takeo, K., Yamashita, S., Shimada, A., Hashimoto, M., Ohno, S., Yokogawa, T., Nakagawa, T., Suzuki, F., Ebihara, A., 2020. Boosting auto-induction of recombinant proteins in Escherichia coli with glucose and lactose additives. Protein Pept. Lett. 28, 1180–1190.
    Venkitasubramanian, P., Daniels, L., Rosazza, J.P.N., 2007. Reduction of carboxylic acids by Nocardia aldehyde oxidoreductase requires a phosphopantetheinylated enzyme. J. Biol. Chem. 282, 478–485.
    Wang, B.X., Cortes-Peña, Y., Grady, B.P., Huber, G.W., Zavala, V.M., 2024. Techno-economic analysis and life cycle assessment of the production of biodegradable polyaliphatic–polyaromatic polyesters. ACS Sustainable Chem. Eng. 12, 9156–9167. doi: 10.1021/acssuschemeng.4c01842
    Wang, X., Sun, M.L., Lin, L., Ledesma-Amaro, R., Wang, K.F., Ji, X.J., 2025. Engineering strategies for producing medium-long chain dicarboxylic acids in oleaginous yeasts. Bioresour. Technol. 430, 132593.
    Weber, D., Patsch, D., Neumann, A., Winkler, M., Rother, D., 2021. Production of the carboxylate reductase from Nocardia otitidiscaviarum in a soluble, active form for in vitro applications. ChemBioChem. 22, 1823–1832. doi: 10.1002/cbic.202000846
    Werner, N., Zibek, S., 2017. Biotechnological production of bio-based long-chain dicarboxylic acids with oleogenious yeasts. World J. Microbiol. Biotechnol. 33, 194.
    World Economic Forum, et al., 2016. The New Plastics Economy: Rethinking the Future of Plas https://www.weforum.org/publications/the-new-plastics-economy-rethinking-the-future-of-plastics/.
    Xu, J.L., Banerjee, A., Pan, S.H., Li, Z.J., 2012. Galactose can be an inducer for production of therapeutic proteins by auto-induction using E. coli BL21 strains. Protein Expr. Purif. 83, 30–36.
    Yoo, H.W., Jung, H., Sarak, S., Kim, Y.C., Park, B.G., Kim, B.G., Patil, M.D., Yun, H., 2022. Multi-enzymatic cascade reactions with Escherichia coli-based modules for synthesizing various bioplastic monomers from fatty acid methyl esters. Green Chem. 24, 2222–2231. doi: 10.1039/d1gc04532f
    Zhang, L.H., Chen, Z., Wang, J.H., Shen, W., Li, Q., Chen, X.Z., 2021. Stepwise metabolic engineering of Candida tropicalis for efficient xylitol production from xylose mother liquor. Microb. Cell Fact. 20, 105.
    Zhou, L.Z., Wu, L.B., Qin, P.K., Li, B.G., 2021. Synthesis and properties of long chain polyesters from biobased 1,5-pentanediol and aliphatic α,ω-diacids with 10-16 carbon atoms. Polym. Degrad. Stab. 187, 109546.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (17) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return