| Citation: | Jongbeom Park, Woo-Young Jeon, Min-Jeong Jang, Hye-Jeong Lee, Sung-Hwa Seo, Young-Su Kim, HyunA Park, Kyung Taek Heo, Bashu Dev Pardhe, Hyunju Kim, Dongjun Park, Ik-Sung Ahn, Ye Won Bae, Hee Cheol Kang, Jae Woo Chung, Soon Ho Jang, Jung-Oh Ahn. An end-to-end microbial platform for 100% bio-based long-chain polyester: From renewable substrate to eco-friendly polymer[J]. Journal of Bioresources and Bioproducts, 2025, 10(4): 530-544. doi: 10.1016/j.jobab.2025.09.005 |
|
Ahsan, M.M., Sung, S., Jeon, H., Patil, M.D., Chung, T., Yun, H., 2018. Biosynthesis of medium- to long-chain α,ω-diols from free fatty acids using CYP153A monooxygenase, carboxylic acid reductase, and E. coli endogenous aldehyde reductases. Catalysts 8, 4.
|
|
Ajeeb, W., Gomes, D.M., Neto, R.C., Baptista, P., 2025. Life cycle analysis of hydrotreated vegetable oils production based on green hydrogen and used cooking oils. Fuel 390, 134749.
|
|
Akhtar, M.K., Turner, N.J., Jones, P.R., 2013. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc. Natl. Acad. Sci. USA 110, 87–92. doi: 10.1073/pnas.1216516110
|
|
Ammala, A., Bateman, S., Dean, K., Petinakis, E., Sangwan, P., Wong, S., Yuan, Q., Yu, L., Patrick, C., Leong, K.H., 2011. An overview of degradable and biodegradable polyolefins. Prog. Polym. Sci. 36, 1015–1049.
|
|
Bautista-Quijano, J.R., Telschow, O., Paulus, F., Vaynzof, Y., 2023. Solvent–antisolvent interactions in metal halide perovskites. Chem. Commun. 59, 10588–10603. doi: 10.1039/d3cc02090h
|
|
Blommel, P.G., Becker, K.J., Duvnjak, P., Fox, B.G., 2007. Enhanced bacterial protein expression during auto-induction obtained by alteration of lac repressor dosage and medium composition. Biotechnol. Prog. 23, 585–598.
|
|
Cao, Z., Gao, H., Liu, M., Jiao, P., 2006. Engineering the acetyl-CoA transportation system of Candida tropicalis enhances the production of dicarboxylic acid. Biotechnol. J. 1, 68–74. doi: 10.1002/biot.200500008
|
|
Cao, W.F., Wang, Y.J., Luo, J.Q., Yin, J.X., Wan, Y.H., 2018. Improving α,ω-dodecanedioic acid productivity from n-dodecane and hydrolysate of Candida cells by membrane integrated repeated batch fermentation. Bioresour. Technol. 260, 9–15.
|
|
Cha, T.Y., Yong, Y., Park, H., Yun, H.J., Jeon, W., Ahn, J.O., Choi, K.Y., 2021. Biosynthesis of C12 fatty alcohols by whole cell biotransformation of C12 derivatives using Escherichia coli two-cell systems expressing CAR and ADH. Biotechnol. Bioprocess Eng. 26, 392–401. doi: 10.1007/s12257-020-0239-7
|
|
Chen, S., Zhou, G.L., Miao, C.X., 2019. Green and renewable bio-diesel produce from oil hydrodeoxygenation: strategies for catalyst development and mechanism. Renew. Sustain. Energy Rev. 101, 568–589. doi: 10.3390/w11030568
|
|
Craft, D.L., Madduri, K.M., Eshoo, M., Wilson, C.R., 2003. Identification and characterization of the CYP52 family of Candida tropicalis ATCC 20336, important for the conversion of fatty acids and alkanes to α,ω-dicarboxylic acids. Appl. Environ. Microbiol. 69, 5983–5991.
|
|
Cristóbal, J., Federica Albizzati, P., Giavini, M., Caro, D., Manfredi, S., Tonini, D., 2023. Management practices for compostable plastic packaging waste: impacts, challenges and recommendations. Waste Manag. 170, 166–176.
|
|
de Mello, A.F.M., de Souza Vandenberghe, L.P., Herrmann, L.W., Letti, L.A.J., Burgos, W.J.M., Scapini, T., Manzoki, M.C., de Oliveira, P.Z., Soccol, C.R., 2024. Strategies and engineering aspects on the scale-up of bioreactors for different bioprocesses. Syst. Microbiol. Biomanuf. 4, 365–385. doi: 10.1007/s43393-023-00205-z
|
|
de Miranda, A.S., Milagre, C.D.F., Hollmann, F., 2022. Alcohol dehydrogenases as catalysts in organic synthesis. Front. Catal. 2, 900554.
|
|
Dewi, H.P., Mustikasari, K., Astuti, M.D., Husain, S., 2022. Selective hydroconversion of coconut oil-derived lauric acid to alcohol and aliphatic alkane over MoOx-modified Ru catalysts under mild conditions. RSC Adv 12, 13319–13329.
|
|
Diederichs, S., Korona, A., Staaden, A., Kroutil, W., Honda, K., Ohtake, H., Büchs, J., 2014. Phenotyping the quality of complex medium components by simple online-monitored shake flask experiments. Microb. Cell Fact. 13, 149.
|
|
Duan, H.H., Dong, J.C., Gu, X.R., Peng, Y.K., Chen, W.X., Issariyakul, T., Myers, W.K., Li, M.J., Yi, N., Kilpatrick, A.F.R., Wang, Y., Zheng, X.S., Ji, S.F., Wang, Q., Feng, J.T., Chen, D.L., Li, Y.D., Buffet, J.C., Liu, H.C., Tsang, S.C.E., O’Hare, D., 2017. Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd-Mo catalyst. Nat. Commun. 8, 591.
|
|
Fernandez-Moya, R., Da Silva, N.A., 2017. Engineering saccharomyces cerevisiae for high-level synthesis of fatty acids and derived products. FEMS Yeast Res 17.
|
|
Fujii, T., Narikawa, T., Sumisa, F., Arisawa, A., Takeda, K., Kato, J., 2006. Production of α,ω-alkanediols using Escherichia coli expressing a cytochrome P450 from Acinetobacter sp. OC4. Biosci. Biotechnol. Biochem. 70, 1379–1385. doi: 10.1271/bbb.50656
|
|
Gahloth, D., Aleku, G.A., Leys, D., 2020. Carboxylic acid reductase: structure and mechanism. J. Biotechnol. 307, 107–113.
|
|
Garcia-Ochoa, F., Gomez, E., 2009. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol. Adv. 27, 153–176.
|
|
Guo, Q.J., Wu, M., Wang, K., Zhang, L., Xu, X.F., 2015. Catalytic hydrodeoxygenation of algae bio-oil over bimetallic Ni–Cu/ZrO2 catalysts. Ind. Eng. Chem. Res. 54, 890–899. doi: 10.1021/ie5042935
|
|
Han, L., Peng, Y.F., Zhang, Y., Chen, W.J., Lin, Y.P., Wang, Q.H., 2017. Designing and creating a synthetic omega oxidation pathway in Saccharomyces cerevisiae enables production of medium-chain α,ω-dicarboxylic acids. Front. Microbiol. 8, 2184.
|
|
Hansen, C.M., 2007. Hansen Solubility Parameters: A User’s Handbook. CRC Press, Boca Raton.
|
|
Honda Malca, S., Scheps, D., Kühnel, L., Venegas-Venegas, E., Seifert, A., Nestl, B.M., Hauer, B., 2012. Bacterial CYP153A monooxygenases for the synthesis of omega-hydroxylated fatty acids. Chem. Commun. 48, 5115–5117. doi: 10.1039/c2cc18103g
|
|
Hsieh, S.C., Wang, J.H., Lai, Y.C., Su, C.Y., Lee, K.T., 2018. Production of 1-dodecanol, 1-tetradecanol, and 1,12-dodecanediol through whole-cell biotransformation in Escherichia coli. Appl. Environ. Microbiol. 84, e01806–17.
|
|
Jeon, W.Y., Jang, M.J., Park, G.Y., Lee, H.J., Seo, S.H., Lee, H.S., Han, C., Kwon, H., Lee, H.C., Lee, J.H., Hwang, Y.T., Lee, M.O., Lee, J.G., Lee, H.W., Ahn, J.O., 2019. Microbial production of sebacic acid from a renewable source: production, purification, and polymerization. Green Chem. 21, 6491–6501. doi: 10.1039/c9gc02274k
|
|
Jiao, P., Huang, Y.M., Li, S.L., Hua, Y.T., Cao, Z.A., 2001. Effects and mechanisms of H2O2 on production of dicarboxylic acid. Biotechnol. Bioeng. 75, 456–462.
|
|
Lee, H., Han, C., Lee, H.W., Park, G., Jeon, W., Ahn, J., Lee, H., 2018. Development of a promising microbial platform for the production of dicarboxylic acids from biorenewable resources. Biotechnol. Biofuels 11, 310.
|
|
Lee, S.M., Lee, J.Y., Hahn, J.S., Baek, S.H., 2024. Engineering of Yarrowia lipolytica as a platform strain for producing adipic acid from renewable resource. Bioresour. Technol. 391, 129920.
|
|
Letcher, T., 2020. Plastic waste and recycling. Environmental Impact, Societal Issues, Prevention, and Solutions. Academic Press, London.
|
|
Li, Z.Y., Xu, X.W., Jiang, E.C., Han, P., Sun, Y., Zhou, L., Zhong, P.D., Fan, X.D., 2020. Alkane from hydrodeoxygenation (HDO) combined with in situ multistage condensation of biomass continuous pyrolysis bio-oil via mixed supports catalyst Ni/HZSM-5-γ-Al2O3. Renew. Energy 149, 535–548.
|
|
Liu, S.C., Li, C., Fang, X.C., Cao, Z.A., 2004. Optimal pH control strategy for high-level production of long-chain α,ω-dicarboxylic acid by Candida tropicalis. Enzyme Microb. Technol. 34, 73–77.
|
|
Liu, C., Liu, F., Cai, J.L., Xie, W.C., Long, T.E., Turner, S.R., Lyons, A., Gross, R.A., 2011. Polymers from fatty acids: poly(ω-hydroxyl tetradecanoic acid) synthesis and physico-mechanical studies. Biomacromolecules 12, 3291–3298. doi: 10.1021/bm2007554
|
|
Liu, H.H., Song, Y.L., Fan, X., Wang, C., Lu, X.Y., Tian, Y., 2021. Yarrowia lipolytica as an oleaginous platform for the production of value-added fatty acid-based bioproducts. Front. Microbiol. 11, 608662.
|
|
Liu, X.L., Wang, Z.W., Xiao, J.J., Zhou, X., Xu, Y., 2022. Osmotic stress tolerance and transcriptome analysis of gluconobacter oxydans to extra-high titers of glucose. Front. Microbiol. 13, 977024.
|
|
Lu, W.H., Ness, J.E., Xie, W.C., Zhang, X.Y., Minshull, J., Gross, R.A., 2010. Biosynthesis of monomers for plastics from renewable oils. J. Am. Chem. Soc. 132, 15451–15455. doi: 10.1021/ja107707v
|
|
Lu, J., Wu, L.B., Li, B.G., 2017. High molecular weight polyesters derived from biobased 1,5-pentanediol and a variety of aliphatic diacids: synthesis, characterization, and thermo-mechanical properties. ACS Sustainable Chem. Eng. 5, 6159–6166. doi: 10.1021/acssuschemeng.7b01050
|
|
Mailaram, S., Maity, S.K., 2019. Techno-economic evaluation of two alternative processes for production of green diesel from karanja oil: a pinch analysis approach. J. Renew. Sustain. Energy 11, 025906.
|
|
Moshood, T.D., Nawanir, G., Mahmud, F., Mohamad, F., Ahmad, M.H., AbdulGhani, A., 2022. Biodegradable plastic applications towards sustainability: a recent innovations in the green product. Clean. Eng. Technol. 6, 100404.
|
|
Muñoz-Arjona, A., Ayala-Cortés, A., Di Stasi, C., Torres, D., Pinilla, J.L., Suelves, I., 2025. Catalytic hydrodeoxygenation of waste cooking oil into green diesel range hydrocarbons: from batch to continuous processing. Chem. Eng. J. 503, 158303.
|
|
Napora-Wijata, K., Strohmeier, G.A., Winkler, M., 2014. Biocatalytic reduction of carboxylic acids. Biotechnol. J. 9, 822–843. doi: 10.1002/biot.201400012
|
|
Notley-McRobb, L., Death, A., Ferenci, T., 1997. The relationship between external glucose concentration and cAMP levels inside Escherichia coli: implications for models of phosphotransferase-mediated regulation of adenylate cyclase. Microbiology 143, 1909–1918. doi: 10.1099/00221287-143-6-1909
|
|
Park, H., Bak, D., Jeon, W., Jang, M., Ahn, J.O., Choi, K.Y., 2022. Engineering of CYP153A33 with enhanced ratio of hydroxylation to overoxidation activity in whole-cell biotransformation of medium-chain 1-alkanols. Front. Bioeng. Biotechnol. 9, 817455.
|
|
Park, G., Kim, Y.C., Jang, M., Park, H., Lee, H.W., Jeon, W., Kim, B.G., Choi, K.Y., Ahn, J., 2023. Biosynthesis of aliphatic plastic monomers with amino residues in Yarrowia lipolytica. Front. Bioeng. Biotechnol. 10, 825576.
|
|
Picataggio, S., Rohrer, T., Deanda, K., Lanning, D., Reynolds, R., Mielenz, J., Eirich, L.D., 1992. Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxylic acids. Biotechnology 10, 894–898.
|
|
Pirner, C.S., Palmer, N.A., Reizman, I.M.B., 2022. Techno-economic assessment of a bioprocess for long-chain dicarboxylic acid production from vegetable oils: a case study for distillers corn oil. Biomass Convers. Biorefin.: 1–13.
|
|
Rizzo, W.B., 2014. Fatty aldehyde and fatty alcohol metabolism: review and importance for epidermal structure and function. Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipds. 1841, 377–389.
|
|
Samir, A., Ashour, F.H., Abdel Hakim, A.A., Bassyouni, M., 2022. Recent advances in biodegradable polymers for sustainable applications. NPJ Mater. Degrad. 6, 68.
|
|
Schaffer, S., Haas, T., 2014. Biocatalytic and fermentative production of α,ω-bifunctional polymer precursors. Org. Process Res. Dev. 18, 752–766. doi: 10.1021/op5000418
|
|
Shahid, A.T., Hofmann, M.A., Silvestre, J.D., Garrido, M., Correia, J.R., 2025. Life cycle assessment of novel partially bio-based unsaturated polyester resins. J. Polym. Environ. 33, 3329–3347. doi: 10.1007/s10924-025-03596-3
|
|
Sophos, N.A., Vasiliou, V., 2003. Aldehyde dehydrogenase gene superfamily: the 2002 update. Chem. Biol. Interact. 143/144, 5–22.
|
|
Stempfle, F., Ortmann, P., Mecking, S., 2016. Long-chain aliphatic polymers to bridge the gap between semicrystalline polyolefins and traditional polycondensates. Chem. Rev. 116, 4597–4641. doi: 10.1021/acs.chemrev.5b00705
|
|
Sung, S., Jeon, H., Sarak, S., Ahsan, M.M., Patil, M.D., Kroutil, W., Kim, B.G., Yun, H., 2018. Parallel anti-sense two-step cascade for alcohol amination leading to ω-amino fatty acids and α,ω-diamines. Green Chem. 20, 4591–4595. doi: 10.1039/c8gc02122h
|
|
Tahara, N., Tachibana, I., Takeo, K., Yamashita, S., Shimada, A., Hashimoto, M., Ohno, S., Yokogawa, T., Nakagawa, T., Suzuki, F., Ebihara, A., 2020. Boosting auto-induction of recombinant proteins in Escherichia coli with glucose and lactose additives. Protein Pept. Lett. 28, 1180–1190.
|
|
Venkitasubramanian, P., Daniels, L., Rosazza, J.P.N., 2007. Reduction of carboxylic acids by Nocardia aldehyde oxidoreductase requires a phosphopantetheinylated enzyme. J. Biol. Chem. 282, 478–485.
|
|
Wang, B.X., Cortes-Peña, Y., Grady, B.P., Huber, G.W., Zavala, V.M., 2024. Techno-economic analysis and life cycle assessment of the production of biodegradable polyaliphatic–polyaromatic polyesters. ACS Sustainable Chem. Eng. 12, 9156–9167. doi: 10.1021/acssuschemeng.4c01842
|
|
Wang, X., Sun, M.L., Lin, L., Ledesma-Amaro, R., Wang, K.F., Ji, X.J., 2025. Engineering strategies for producing medium-long chain dicarboxylic acids in oleaginous yeasts. Bioresour. Technol. 430, 132593.
|
|
Weber, D., Patsch, D., Neumann, A., Winkler, M., Rother, D., 2021. Production of the carboxylate reductase from Nocardia otitidiscaviarum in a soluble, active form for in vitro applications. ChemBioChem. 22, 1823–1832. doi: 10.1002/cbic.202000846
|
|
Werner, N., Zibek, S., 2017. Biotechnological production of bio-based long-chain dicarboxylic acids with oleogenious yeasts. World J. Microbiol. Biotechnol. 33, 194.
|
|
World Economic Forum, et al., 2016. The New Plastics Economy: Rethinking the Future of Plas
|
|
Xu, J.L., Banerjee, A., Pan, S.H., Li, Z.J., 2012. Galactose can be an inducer for production of therapeutic proteins by auto-induction using E. coli BL21 strains. Protein Expr. Purif. 83, 30–36.
|
|
Yoo, H.W., Jung, H., Sarak, S., Kim, Y.C., Park, B.G., Kim, B.G., Patil, M.D., Yun, H., 2022. Multi-enzymatic cascade reactions with Escherichia coli-based modules for synthesizing various bioplastic monomers from fatty acid methyl esters. Green Chem. 24, 2222–2231. doi: 10.1039/d1gc04532f
|
|
Zhang, L.H., Chen, Z., Wang, J.H., Shen, W., Li, Q., Chen, X.Z., 2021. Stepwise metabolic engineering of Candida tropicalis for efficient xylitol production from xylose mother liquor. Microb. Cell Fact. 20, 105.
|
|
Zhou, L.Z., Wu, L.B., Qin, P.K., Li, B.G., 2021. Synthesis and properties of long chain polyesters from biobased 1,5-pentanediol and aliphatic α,ω-diacids with 10-16 carbon atoms. Polym. Degrad. Stab. 187, 109546.
|