Volume 4 Issue 3
Sep.  2019
Article Contents
Turn off MathJax

Citation:

Antibacterial Nanoparticles with Universal Adhesion Function Based on Dopamine and Eugenol

  • Corresponding author: Dongyue ZHANG, dyzhang@scu.edu.cn ;  Jianshu LI, fredca2005@163.com
  • Received Date: 2019-02-21
    Accepted Date: 2019-04-22
    Fund Project:

    The research is supported by National Key Research and Development Program of China (No. 2016YFC1100404), State Key Laboratory of Polymer Materials Engineering (No. sklpme2018-3-10) and Fundamental Research Funds for Central Universities (No. YJ201854).

  • In this work, dopamine methacrylamide (DMA) and eugenyl methacrylate (EMA) were used to synthesize polymeric particles of Poly (DMA-co-EMA) by free radical precipitation copolymerization. These two monomers were modified from dopamine (consisting of the catechol moieties adhering to various materials) and eugenol (with antibacterial property), respectively. The proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FT-IR) spectroscopy were applied to confirm the successful synthesis of the two monomers and copolymer. The scanning electron microscope (SEM) images showed the size and morphology of the polymer particles. The results indicated that regular particles with uniform size could be obtained with a monomer feeding ratio of 5:5. The results of antibacterial activity test indicated that the obtained polymer particles have an antibacterial rate over 90% to Eugenia coli.
  • 加载中
  • [1]

    Biehl P, von der Lühe M, Dutz S, et al., 2018. Synthesis, characterization, and applications of magnetic nanoparticles featuring polyzwitterionic coatings. Polymers, 10(1):91. DOI:10.3390/polym10010091.
    [2]

    Coady D J, Ong Z Y, Lee P S, et al., 2014. Enhancement of cationic antimicrobial materials via cholesterol incorporation. Advanced Healthcare Materials, 3(6):882-889. DOI:10.1002/adhm.201300554.
    [3]

    Cockerill F R, 2013. Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing:Twenty-second Informational Supplement. U. S.:Clinical and Laboratory Standards Institute.
    [4]

    Costerton J W, 1999. Bacterial biofilms:a common cause of persistent infections. Science, 284(5418):1318-1322. DOI:10.1126/science.284.5418.1318
    [5]

    Dai T J, Wang C P, Wang Y Q, et al., 2018. A nanocomposite hydrogel with potent and broad-spectrum antibacterial activity. ACS Applied Materials & Interfaces, 10(17):15163-15173. DOI:10.1021/acsami.8b02527.
    [6]

    Ding X, Yang C, Lim T P, et al., 2012. Antibacterial and antifouling catheter coatings using surface grafted PEG-b-cationic polycarbonate diblock copolymers. Biomaterials, 33(28):6593-6603. DOI:10.1016/j.biomaterials.2012. 06.001.
    [7]

    Downey J S, Frank R S, Li W H, et al., 1999. Growth mechanism of poly(divinylbenzene) microspheres in precipitation polymerization. Macromolecules, 32(9):2838-2844. DOI:10.1021/ma9812027.
    [8]

    Glass P, Chung H, Washburn N R, et al., 2009. Enhanced reversible adhesion of dopamine methacrylamide-coated, elastomer microfibrillar structures under wet conditions. Langmuir, 25(12):6607-6612. DOI:10.1021/la9009114.
    [9]

    Hendriks J G E, van Horn J R, van der Mei H C, et al., 2004. Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection. Biomaterials, 25(3):545-556. DOI:10.1016/s0142-9612(03)00554-4.
    [10]

    Laekeman G M, van Hoof L, Haemers A, et al., 1990. Eugenol a valuable compound forin vitro experimental research and worthwhile for furtherin vivo investigation. Phytotherapy Research, 4(3):90-96. DOI:10.1002/ptr.2650040304.
    [11]

    Lam S J, Wong E H H, Boyer C, et al., 2018. Antimicrobial polymeric nanoparticles. Progress in Polymer Science, 76:40-64. DOI:10.1016/j.progpolymsci.2017.07.007.
    [12]

    Le Ouay B, Stellacci F, 2015. Antibacterial activity of silver nanoparticles:A surface science insight. Nano Today, 10(3):339-354. DOI:10.1016/j.nantod.2015.04.002.
    [13]

    Lee H, Dellatore S M, Miller W M, et al., 2007. Mussel-inspired surface chemistry for multifunctional coatings. Science, 318(5849):426-430. DOI:10.1126/science.1147241.
    [14]

    Letícia Braz A, Ahmed I, 2017. Manufacturing processes for polymeric micro and nanoparticles and their biomedical applications. AIMS Bioengineering, 4(1):46-72. DOI:10.3934/bioeng.2017.1.46.
    [15]

    Li F, Weir M D, Xu H H K, 2013. Effects of quaternary ammonium chain length on antibacterial bonding agents. Journal of Dental Research, 92(10):932-938. DOI:10.1177/0022034513502053.
    [16]

    Lowe A B, McCormick C L, 2002. Synthesis and solution properties of zwitterionic polymers. Chemical Reviews, 102(11):4177-4190. DOI:10.1021/cr020371t.
    [17]

    Nguyen T K, Lam S J, Ho K K K, et al., 2017. Rational design of single-chain polymeric nanoparticles that kill planktonic and biofilm bacteria. ACS Infectious Diseases, 3(3):237-248. DOI:10.1021/acsinfecdis.6b00203.
    [18]

    Rinaudo M, 2007. Chitin and chitosan:properties and applications. ChemInform, 38(27):603-632. DOI:10.1002/chin.200727270.
    [19]

    Rojo L, Vazquez B, Parra J, et al., 2006. From natural products to polymeric derivatives of "eugenol":a new approach for preparation of dental composites and orthopedic bone cements. Biomacromolecules, 7(10):2751-2761. DOI:10.1021/bm0603241.
    [20]

    Shalumon K T, Sheu C, Chen C, et al., 2018. Multi-functional electrospun antibacterial core-shell nanofibrous membranes for prolonged prevention of post-surgical tendon adhesion and inflammation. Acta Biomaterialia, 72:121-136. DOI:10.1016/j.actbio.2018.03.044.
    [21]

    Wang R B, Wang L, Zhou L Z, et al., 2012. The effect of a branched architecture on the antimicrobial activity of poly (sulfone amines) and poly(sulfone amine)/silver nanocomposites. Journal of Materials Chemistry, 22(30):15227. DOI:10.1039/c2jm00122e.
    [22]

    Yang J, Khan M, Zhang L, et al., 2015. Antimicrobial surfaces grafted random copolymers with REDV peptide beneficial for endothelialization. Journal of Materials Chemistry B, 3(39):7682-7697. DOI:10.1039/c5tb01155h.
    [23]

    Yuan Y Q, Liu F, Xue L L, et al., 2016. Recyclable Escherichia coli-specific-killing AuNP-Polymer (ESKAP) nanocomposites. ACS Applied Materials & Interfaces, 8(18):11309-11317. DOI:10.1021/acsami.6b02074.
    [24]

    Zhao Y H, Wu Y, Wang L, et al., 2017. Bio-inspired reversible underwater adhesive. Nature Communications, 8:2218. DOI:10.1038/s41467-017-02387-2.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Article Metrics

Article views(17) PDF downloads(5) Cited by()

Proportional views

Antibacterial Nanoparticles with Universal Adhesion Function Based on Dopamine and Eugenol

    Corresponding author: Dongyue ZHANG, dyzhang@scu.edu.cn
    Corresponding author: Jianshu LI, fredca2005@163.com
  • 1 College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China;
  • 2 State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
Fund Project:  The research is supported by National Key Research and Development Program of China (No. 2016YFC1100404), State Key Laboratory of Polymer Materials Engineering (No. sklpme2018-3-10) and Fundamental Research Funds for Central Universities (No. YJ201854).

Abstract: In this work, dopamine methacrylamide (DMA) and eugenyl methacrylate (EMA) were used to synthesize polymeric particles of Poly (DMA-co-EMA) by free radical precipitation copolymerization. These two monomers were modified from dopamine (consisting of the catechol moieties adhering to various materials) and eugenol (with antibacterial property), respectively. The proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FT-IR) spectroscopy were applied to confirm the successful synthesis of the two monomers and copolymer. The scanning electron microscope (SEM) images showed the size and morphology of the polymer particles. The results indicated that regular particles with uniform size could be obtained with a monomer feeding ratio of 5:5. The results of antibacterial activity test indicated that the obtained polymer particles have an antibacterial rate over 90% to Eugenia coli.

Reference (24)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return