Volume 4 Issue 4
Nov.  2019
Turn off MathJax
Article Contents
Dubin DONG, Xiaoxia WANG. Ternary Composite MnO2@MoS2/Polypyrrole from In-situ Synthesis for Binder-free and Flexible Supercapacitor[J]. Journal of Bioresources and Bioproducts, 2019, 4(4): 242-250. doi: 10.12162/jbb.v4i4.010
Citation: Dubin DONG, Xiaoxia WANG. Ternary Composite MnO2@MoS2/Polypyrrole from In-situ Synthesis for Binder-free and Flexible Supercapacitor[J]. Journal of Bioresources and Bioproducts, 2019, 4(4): 242-250. doi: 10.12162/jbb.v4i4.010

Ternary Composite MnO2@MoS2/Polypyrrole from In-situ Synthesis for Binder-free and Flexible Supercapacitor

doi: 10.12162/jbb.v4i4.010
More Information
  • Corresponding author: Xiaoxia WANG, E-mail:812588636@qq.com
  • Received Date: 2019-06-21
  • Accepted Date: 2019-08-01
  • Publish Date: 2019-10-01
  • MnO2@MoS2/Polypyrrole ternary composite is prepared through hydrothermal methods and a simple oxidation process by using MnO2@MoS2 sheet as the substrate and polypyrrole. The ternary composite serves as an electrode for pseudocapacitor which has more superior electrochemical properties compared with the binary complex. The supercapacitor electrode consists of two dimensional MoS2 layers as load skeleton, MnO2 providing electrochemical performance and polypyrrole improving high electric conductivity. These three components form a compact structure and synergistic effect leads to enhancing sufficient oxidation reduction for supercapacitor performance. Hence, MnO2@MoS2/Polypyrrole structure possesses higher specific capacitance of 490 F/g at a current density of 1 A/g and excellent cycling stability of 90% after 1000 cycles at 1 A/g. Here, Polypyrrole is also used as the bender material, exhibiting mechanical flexibility for electrode. The results of this study provides a simple method to produce an effective material for flexible pseudocapacitor electrodes for higher energy storage devices.

     

  • loading
  • Adams K, González A F, Mallows J, et al., 2019. Facile synthesis and characterization of Bi13S18I2 films as a stable supercapacitor electrode material. Journal of Materials Chemistry A, 7(4):1638-1646. DOI: 10.1039/c8ta11029h.
    Aguirre J C, Ferreira A, Ding H, et al., 2014. Panoramic view of electrochemical pseudocapacitor and organic solar cell research in molecularly engineered energy materials (MEEM). The Journal of Physical Chemistry C, 118(34):19505-19523. DOI: 10.1021/jp501047j.
    Bora C, Sharma J, Dolui S, 2014. Polypyrrole/sulfonated graphene composite as electrode material for supercapacitor. The Journal of Physical Chemistry C, 118(51):29688-29694. DOI: 10.1021/jp511095s.
    Bundles R G, Datablade C, Web D D F, 2006. Influence of the surface pre-treatment prior to the film synthesis, on the corrosion protection of iron with polypyrrole films, Electrochimica Acta, 51:1695-1703. doi: 10.1016/j.electacta.2005.02.150
    Chen G Z, 2013. Understanding supercapacitors based on nano-hybrid materials with interfacial conjugation. Progress in Natural Science:Materials International, 23(3):245-255. DOI: 10.1016/j.pnsc.2013.04.001.
    Chen M D, Wumaie T, Li W L, et al., 2015. Electrochemical performance of cotton stalk based activated carbon electrodes modified by MnO2 for supercapacitor. Materials Technology, 30(Supp. 1):A2-A7. DOI: 10.1179/1753555714y.0000000241.
    Chen T, Dai L M, 2013. Carbon nanomaterials for high-performance supercapacitors. Materials Today, 16(7/8):272-280. DOI: 10.1016/j.mattod.2013.07.002.
    Kim M H, Kim K B, Park S M, et al., 2016. Hierarchically structured activated carbon for ultracapacitors. Scientific Reports, 6:21182. DOI: 10.1038/srep21182.
    Ko Y N, Kang Y C, Park S B, 2014. Superior electrochemical properties of MoS2 powders with a MoS2@void@MoS2 configuration. Nanoscale, 6(9):4508. DOI: 10.1039/c4nr00064a.
    Lee J S M, Briggs M E, Hu C C, et al., 2018. Controlling electric double-layer capacitance and pseudocapacitance in heteroatom-doped carbons derived from hypercrosslinked microporous polymers. Nano Energy, 46:277-289. DOI: 10.1016/j.nanoen.2018.01.042.
    Li H L, Yu K, Tang Z, et al., 2016. High photocatalytic performance of a type-Ⅱ α-MoO3@MoS2 heterojunction:from theory to experiment. Physical Chemistry Chemical Physics, 18(20):14074-14085. DOI: 10.1039/c6cp02027e.
    Li Z P, Mi Y J, Liu X H, et al., 2011. Flexible graphene/MnO2 composite papers for supercapacitor electrodes. Journal of Materials Chemistry, 21(38):14706. DOI: 10.1039/c1jm11941a.
    Ma X M, Zhou W Q, Mo D Z, et al., 2015. Effect of substituent position on electrodeposition, morphology, and capacitance performance of polyindole bearing a carboxylic group. Electrochimica Acta, 176:1302-1312. DOI:10.1016/j. electacta.2015.07.148.
    Pan Q C, Huang Y G, Wang H Q, et al., 2016. MoS2/C nanosheets Encapsulated Sn@SnOx nanoparticles as high-performance Lithium-iom battery anode material. Electrochimica Acta, 197:50-57. DOI: 10.1016/j.electacta.2016.03.051.
    Pan Q C, Zheng F H, Ou X, et al., 2017. MoS2 decorated Fe3O4/Fe1-xS@C nanosheets as high-performance anode materials for lithium ion and sodium ion batteries. ACS Sustainable Chemistry & Engineering, 5(6):4739-4745. DOI: 10.1021/acssuschemeng.7b00119.
    Ranganatha S, Munichandraiah N, 2018. Γ-MnS nanoparticles anchored reduced graphene oxide:Electrode materials for high performance supercapacitors. Journal of Science:Advanced Materials and Devices, 3(3):359-365. DOI: 10.1016/j.jsamd.2018.07.001.
    Sharma R K, Rastogi A C, Desu S B, 2008. Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor. Electrochimica Acta, 53(26):7690-7695. DOI: 10.1016/j.electacta.2008.04.028.
    Shi X M, Zhou W P, Ma D L, et al., 2015. Electrospinning of nanofibers and their applications for energy devices. Journal of Nanomaterials, 2015:1-20. DOI: 10.1155/2015/140716.
    Spaldin N A, Fiebig M, Mostovoy M, 2008. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. Journal of Physics:Condensed Matter, 20(43):434203. DOI: 10.1088/0953-8984/20/43/434203.
    Su Z K, Cui Y H, Tang X H, et al., 2008. Fabrication of alternate stacking MnO2/MoS2 layered nanohybrid by a sonochemistry technology. Chinese Journal of Chemistry, 26(3):575-577. DOI: 10.1002/cjoc.200890108.
    Wang Y G, Song Y F, Xia Y Y, 2016. Electrochemical capacitors:mechanism, materials, systems, characterization and applications. Chemical Society Reviews, 45(21):5925-5950. DOI: 10.1039/c5cs00580a.
    Wang Z H, Tammela P, Zhang P, et al., 2014. High areal and volumetric capacity sustainable all-polymer paper-based supercapacitors. Journal of Materials Chemistry A, 2(39):16761-16769. DOI: 10.1039/c4ta03724c.
    Xu W B, Mu B, Wang A Q, 2018. All-solid-state high-energy asymmetric supercapacitor based on natural tubular fibers. Journal of Materials Science, 53(16):11659-11670. DOI: 10.1007/s10853-018-2418-x.
    Yang X, Niu H, Jiang H, et al., 2016. A high energy density all-solid-state asymmetric supercapacitor based on MoS2/graphene nanosheets and MnO2/graphene hybrid electrodes. Journal of Materials Chemistry A, 4(29):11264-11275. DOI: 10.1039/c6ta03474h.
    Yao W, Zhou H, Lu Y, 2013. Synthesis and property of novel MnO2@polypyrrole coaxial nanotubes as electrode material for supercapacitors. Journal of Power Sources, 241:359-366. DOI: 10.1016/j.jpowsour.2013.04.142.
    Yu G H, Hu L B, Liu N, et al., 2011. Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Letters, 11(10):4438-4442. DOI: 10.1021/nl2026635.
    Yuan L X, Wang Z H, Zhang W X, et al., 2011. Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy & Environmental Science, 4(2):269-284. DOI: 10.1039/c0ee00029a.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (1462) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return