Volume 4 Issue 4
Oct.  2019
Article Contents
Turn off MathJax

Citation:

Multifunctional Polypyrrole-silver Coated Layered Double Hydroxides Embedded into a Biodegradable Polymer Matrix for Enhanced Antibacterial and Gas Barrier Properties

  • Corresponding author: Long MAO, maolong0412@163.com ;  Yuejun LIU, yjliu_2005@126.com
  • Received Date: 2019-06-21
    Fund Project:

    This study was supported by National Natural Science Foundation of China (No. 11872179), Science and Technology Planning Project of Fujian Province (No. 2018H6024), Natural Science Foundation of Hunan Province (No. 2019JJ50132), High-Level Talents Support Plan of Xiamen University of Technology (No. YKJ19008R), Open Fund for Innovation Platform of University in Hunan Province, China (No. 18K079). Open Fund of Fujian Provincial Key Laboratory of Functional Materials and Applications (Xiamen University of Technology), China (No. fma2018004, No. fma2017110).

  • In this study, polypyrrole-silver coated layered double hydroxides (LDHs@PPy-Ag) was prepared by chemical polymerization of pyrrole (Py) with silver ions. Silver nanoparticles (AgNPs) could be uniformly reduced onto PPy coatings in situ by redox reaction during simultaneous polymerization process. And LDHs@PPy-Ag/poly(ε-caprolactone) (PCL) nanocomposites were fabricated by solution casting method. It is revealed that spherical AgNPs are loaded on PPy coatings uniformly. Particularly, compared with pure PCL, LDHs@PPy-Ag/PCL nanocomposites with incorporation of only 1 wt% LDHs@PPy-Ag show a 17% increase in tensile strength (36.5 MPa) and a 29% increase in elongation at break (822%). Upon PPy-Ag coatings onto original LDHs, relative permeability of LDHs@PPy-Ag/PCL nanocomposites decreases to 52% with the same addition. Meanwhile, due to the double antibacterial activity of PPy and AgNPs, the antibacterial rate of LDHs@PPy-Ag reaches 100%. And the corresponding LDHs@PPy-Ag/PCL nanocomposites also show outstanding antibacterial activity. Considering the superiority of their comprehensive performance, antibacterial LDHs@PPy-Ag/PCL nanocomposites can be used further for the application as biodegradable polymeric active packaging materials.
  • 加载中
  • [1]

    Allou N B, Saikia P, Borah A, et al., 2017. Hybrid nanocomposites of layered double hydroxides:an update of their biological applications and future prospects. Colloid and Polymer Science, 295(5):725-747. DOI:10.1007/s00396-017-4047-3.
    [2]

    Avérous L, Pollet E, Sorrentino A, et al., 2012. Green nano-biocomposites. Environmental Silicate Nano-Biocomposites. London:Springer London:1-11.
    [3]

    Bai Y K, Mao L, Liu Y J, 2016. High temperature shape memory polyimide ionomer. Journal of Applied Polymer Science, 133(30):43630-43637. DOI:10.1002/app.43630.
    [4]

    Bharadwaj R K, 2001. Modeling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules, 34(26):9189-9192. DOI:10.1021/ma010780b.
    [5]

    Bideau B, Bras J, Saini S, et al., 2016. Mechanical and antibacterial properties of a nanocellulose-polypyrrole multilayer composite. Materials Science and Engineering:C, 69:977-984. DOI:10.1016/j.msec.2016.08.005.
    [6]

    Bideau B, Loranger E, Daneault C, 2018. Nanocellulose-polypyrrole-coated paperboard for food packaging application. Progress in Organic Coatings, 123:128-133. DOI:10.1016/j.porgcoat.2018.07.003.
    [7]

    Bugatti V, Costantino U, Gorrasi G, et al., 2010. Nano-hybrids incorporation into poly(ε-caprolactone) for multifunctional applications:mechanical and barrier properties. European Polymer Journal, 46(3):418-427. DOI:10.1016/j.eurpolymj. 2009.11.003.
    [8]

    Choudalakis G, Gotsis A D, 2009. Permeability of polymer/clay nanocomposites:a review. European Polymer Journal, 45(4):967-984. DOI:10.1016/j.eurpolymj.2009.01.027.
    [9]

    Costantino U, Bugatti V, Gorrasi G, et al., 2009. New polymeric composites based on poly(ε-caprolactone) and layered double hydroxides containing antimicrobial species. ACS Applied Materials & Interfaces, 1(3):668-677. DOI:10.1021/am8001988.
    [10]

    da Silva F A G Jr, Alcaraz-Espinoza J J, da Costa M M, et al., 2017. Synthesis and characterization of highly conductive polypyrrole-coated electrospun fibers as antibacterial agents. Composites Part B:Engineering, 129:143-151. DOI:10.1016/j.compositesb.2017.07.080.
    [11]

    Du P H, Xue B, Song Y H, et al., 2010. Fracture surface characteristics and impact properties of poly(butylene terephthalate). Polymer Bulletin, 64(2):185-196. DOI:10.1007/s00289-009-0199-8.
    [12]

    Gain O, Espuche E, Pollet E, et al., 2005. Gas barrier properties of poly(ε-caprolactone)/clay nanocomposites:influence of the morphology and polymer/clay interactions. Journal of Polymer Science Part B:Polymer Physics, 43(2):205-214. DOI:10.1002/polb.20316.
    [13]

    Genovese L, Gigli M, Lotti N, et al., 2014. Biodegradable long chain aliphatic polyesters containing ether-linkages:synthesis, solid-state, and barrier properties. Industrial & Engineering Chemistry Research, 53(27):10965-10973. DOI:10.1021/ie5017865.
    [14]

    Gu Z M, Li C Z, Wang G C, et al., 2010. Synthesis and characterization of polypyrrole/graphite oxide composite by in situ emulsion polymerization. Journal of Polymer Science Part B:Polymer Physics, 48(12):1329-1335. DOI:10.1002/polb.22031.
    [15]

    Huang H D, Ren P G, Xu J Z, et al., 2014. Improved barrier properties of poly(lactic acid) with randomly dispersed graphene oxide nanosheets. Journal of Membrane Science, 464:110-118. DOI:10.1016/j.memsci.2014.04.009.
    [16]

    Kim H J, Kim D G, Yoon H, et al., 2015a. Polyphenol/FeIIIComplex coated membranes having multifunctional properties prepared by a one-step fast assembly. Advanced Materials Interfaces, 2(14):1500298. DOI:10.1002/admi. 201500298.
    [17]

    Kim S, Kwak S, Lee S, et al., 2015b. One-step functionalization of zwitterionic poly[(3-(methacryloylamino)propyl)dimethyl (3-sulfopropyl)ammonium hydroxide] surfaces by metal-polyphenol coating. Chemical Communications, 51(25):5340-5342.
    [18]

    Layek R K, Das A K, Park M J, et al., 2015. Enhancement of physical, mechanical, and gas barrier properties in noncovalently functionalized graphene oxide/poly (vinylidene fluoride) composites. Carbon, 81:329-338. DOI:10.1016/j.carbon. 2014.09.065.
    [19]

    Li J Z, Song Z W, Gao L B, et al., 2016. Preparation of carbon nanotubes/polylactic acid nanocomposites using a non-covalent method. Polymer Bulletin, 73(8):2121-2128. DOI:10.1007/s00289-015-1597-8.
    [20]

    Li M, Li W G, Liu J, et al., 2013. Preparation and characterization of PPy with methyl orange as soft template. Journal of Materials Science:Materials in Electronics, 24(3):906-910. DOI:10.1007/s10854-012-0847-x.
    [21]

    Liau C P, Bin Ahmad M, Shameli K, et al., 2014. Preparation and characterization of polyhydroxybutyrate/polycaprolactone nanocomposites. The Scientific World Journal, 2014:1-9. DOI:10.1155/2014/572726.
    [22]

    Liu F J, Yuan Y, Li L, et al., 2015. Synthesis of polypyrrole nanocomposites decorated with silver nanoparticles with electrocatalysis and antibacterial property. Composites Part B:Engineering, 69:232-236. DOI:10.1016/j.compositesb. 2014.09.030.
    [23]

    Liu Y J, Mao L, Fan S H, 2014. Preparation and study of intumescent flame retardant poly(butylene succinate) using MgAlZnFe-CO3 layered double hydroxide as a synergistic agent. Journal of Applied Polymer Science, 131(17):8964-8973. DOI:10.1002/app.40736.
    [24]

    Ludueña L N, Alvarez V A, Vazquez A, 2007. Processing and microstructure of PCL/clay nanocomposites. Materials Science and Engineering:A, 460/461:121-129. DOI:10.1016/j.msea. 2007.01.104.
    [25]

    Mao L, Liu J Y, Zheng S J, et al., 2019. Mussel-inspired nano-silver loaded layered double hydroxides embedded into a biodegradable polymer matrix for enhanced mechanical and gas barrier properties. RSC Advances, 9(10):5834-5843. DOI:10.1039/c8ra09602c.
    [26]

    Mao L, Liu Y J, Bai Y K, et al., 2017a. Poly(ε-caprolactone) nanocomposites with layered double hydroxides modified by in situ grafting polymerization:structure characterization and barrier properties. Journal of Applied Polymer Science, 134(38):45320. DOI:10.1002/app.45320.
    [27]

    Mao L, Liu Y J, Wu H Q, et al., 2017b. Poly(ε-caprolactone) filled with polydopamine-coated high aspect ratio layered double hydroxide:simultaneous enhancement of mechanical and barrier properties. Applied Clay Science, 150:202-209. DOI:10.1016/j.clay.2017.09.031.
    [28]

    Mao L, Wu H Q, Liu Y J, et al., 2018. Enhanced mechanical and gas barrier properties of poly(ε-caprolactone) nanocomposites filled with tannic acid-Fe(III) functionalized high aspect ratio layered double hydroxides. Materials Chemistry and Physics, 211:501-509. DOI:10.1016/j.matchemphys.2018.03.008.
    [29]

    Peng H D, Han Y, Liu T X, et al., 2010. Morphology and thermal degradation behavior of highly exfoliated CoAl-layered double hydroxide/polycaprolactone nanocomposites prepared by simple solution intercalation. Thermochimica Acta, 502(1/2):1-7. DOI:10.1016/j.tca.2010.01.009.
    [30]

    Pucciariello R, Tammaro L, Villani V, et al., 2007. New nanohybrids of poly(ε-caprolactone) and a modified Mg/Al hydrotalcite:mechanical and thermal properties. Journal of Polymer Science Part B:Polymer Physics, 45(8):945-954. DOI:10.1002/polb.21106.
    [31]

    Pucciariello R, Villani V, Giammarino G, 2012. Crystallisation of nanohybrids of poly(ε-caprolactone) and hydrotalcites containing antimicrobial species. Plastics, Rubber and Composites, 41(1):18-22. DOI:10.1179/1743289811y. 0000000014.
    [32]

    Seoane I T, Luzi F, Puglia D, et al., 2018. Enhancement of paperboard performance as packaging material by layering with plasticized polyhydroxybutyrate/nanocellulose coatings. Journal of Applied Polymer Science, 135(48):46872. DOI:10.1002/app.46872.
    [33]

    Shafiei S S, Shavandi M, Ahangari G, et al., 2016. Electrospun layered double hydroxide/poly (ε-caprolactone) nanocomposite scaffolds for adipogenic differentiation of adipose-derived mesenchymal stem cells. Applied Clay Science, 127/128:52-63. DOI:10.1016/j.clay.2016.04.004.
    [34]

    Tan B, Thomas N L, 2016. A review of the water barrier properties of polymer/clay and polymer/graphene nanocomposites. Journal of Membrane Science, 514:595-612. DOI:10.1016/j.memsci. 2016.05.026.
    [35]

    Taviot-Guého C, Prévot V, Forano C, et al., 2018. Tailoring hybrid layered double hydroxides for the development of innovative applications. Advanced Functional Materials, 28(27):1703868. DOI:10.1002/adfm.201703868.
    [36]

    Veschambres C, Halma M, Bourgeat-Lami E, et al., 2016. Layered double hydroxides:efficient fillers for waterborne nanocomposite films. Applied Clay Science, 130:55-61. DOI:10.1016/j.clay.2016.01.018.
    [37]

    Wang X T, Liang Z Q, Zhang F Z, et al., 2013. Enhanced catalytic performances of Ag nanoparticles supported on layered double hydroxide for styrene epoxidation. Journal of Materials Science, 48(17):5899-5903. DOI:10.1007/s10853-013-7385-7.
    [38]

    Wu J R, Huang G S, Li H, et al., 2013. Enhanced mechanical and gas barrier properties of rubber nanocomposites with surface functionalized graphene oxide at low content. Polymer, 54(7):1930-1937. DOI:10.1016/j.polymer.2013.01.049.
    [39]

    Xu B, Zheng Q, Song Y H, et al., 2006. Calculating barrier properties of polymer/clay nanocomposites:effects of clay layers. Polymer, 47(8):2904-2910. DOI:10.1016/j.polymer. 2006.02.069.
    [40]

    Xu G N, Qiao X L, Qiu X L, et al., 2011. Preparation and characterization of nano-silver loaded montmorillonite with strong antibacterial activity and slow release property. Journal of Materials Science & Technology, 27(8):685-690. DOI:10.1016/s1005-0302(11)60126-6.
    [41]

    Zare-Shahabadi A, Shokuhfar A, Ebrahimi-Nejad S, et al., 2011. Modeling the stiffness of polymer/layered silicate nanocomposites:more accurate predictions with consideration of exfoliation ratio as a function of filler content. Polymer Testing, 30(4):408-414. DOI:10.1016/j.polymertesting. 2011.02.009.
    [42]

    Zhang Z, Zhang J, Zhang B L, et al., 2013. Mussel-inspired functionalization of graphene for synthesizing Ag-polydopamine-graphenenanosheets as antibacterial materials. Nanoscale, 5(1):118-123. DOI:10.1039/c2nr32092d.
    [43]

    Zhao S, Li J H, 2015. Silver-cobalt oxides derived from silver nanoparticles deposited on layered double hydroxides for methane combustion. ChemCatChem, 7(13):1966-1974. DOI:10.1002/cctc.201500254.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Article Metrics

Article views(33) PDF downloads(10) Cited by()

Proportional views

Multifunctional Polypyrrole-silver Coated Layered Double Hydroxides Embedded into a Biodegradable Polymer Matrix for Enhanced Antibacterial and Gas Barrier Properties

    Corresponding author: Long MAO, maolong0412@163.com
    Corresponding author: Yuejun LIU, yjliu_2005@126.com
  • 1 Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China;
  • 2 Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, China
Fund Project:  This study was supported by National Natural Science Foundation of China (No. 11872179), Science and Technology Planning Project of Fujian Province (No. 2018H6024), Natural Science Foundation of Hunan Province (No. 2019JJ50132), High-Level Talents Support Plan of Xiamen University of Technology (No. YKJ19008R), Open Fund for Innovation Platform of University in Hunan Province, China (No. 18K079). Open Fund of Fujian Provincial Key Laboratory of Functional Materials and Applications (Xiamen University of Technology), China (No. fma2018004, No. fma2017110).

Abstract: In this study, polypyrrole-silver coated layered double hydroxides (LDHs@PPy-Ag) was prepared by chemical polymerization of pyrrole (Py) with silver ions. Silver nanoparticles (AgNPs) could be uniformly reduced onto PPy coatings in situ by redox reaction during simultaneous polymerization process. And LDHs@PPy-Ag/poly(ε-caprolactone) (PCL) nanocomposites were fabricated by solution casting method. It is revealed that spherical AgNPs are loaded on PPy coatings uniformly. Particularly, compared with pure PCL, LDHs@PPy-Ag/PCL nanocomposites with incorporation of only 1 wt% LDHs@PPy-Ag show a 17% increase in tensile strength (36.5 MPa) and a 29% increase in elongation at break (822%). Upon PPy-Ag coatings onto original LDHs, relative permeability of LDHs@PPy-Ag/PCL nanocomposites decreases to 52% with the same addition. Meanwhile, due to the double antibacterial activity of PPy and AgNPs, the antibacterial rate of LDHs@PPy-Ag reaches 100%. And the corresponding LDHs@PPy-Ag/PCL nanocomposites also show outstanding antibacterial activity. Considering the superiority of their comprehensive performance, antibacterial LDHs@PPy-Ag/PCL nanocomposites can be used further for the application as biodegradable polymeric active packaging materials.

Reference (43)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return