Lithium-ion batteries (LIB) are the dominant power sources for many consumer electronics, and they can also be large-scale power sources/energy storage devices, which can be credited to their advantages:high efficiency, high energy density, long cycling life. The separator membrane is a critical component of LIB. It is an electron insulator between the cathode and anode electrodes in order to prevent electrical short circuits, and it also functions as an ionic conductor to let ions pass freely in the charging and discharging cycles. The critical parameters to meet high quality separator membranes include:high dimensional/thermal/chemical stability, good wettability towards electrolyte, high mechanical strength, appropriate porosity and pore size distribution. Conventionally, plastic materials, such as polyolefin, are the main materials for manufacturing LIB separator membrane. However, polyolefin separator s have a number of drawbacks such as poor thermal stability and wettability. Cellulosic materials have unique properties, and can meet the quality specifications of LIB separator membranes; in addition, they are abundant, low cost, biodegradable, renewable and sustainable. Therefore, cellulose and its related materials can be promising alternatives to replace polyolefin for LIB separator membranes. In this short review, relevant literature on the topic was reviewed and further development/improvement of cellulose-based LIB separator membrane will be discussed.