Volume 4 Issue 1
Feb.  2019
Turn off MathJax
Article Contents
Patrick M. GODWIN, Yuanfeng PAN, Huining XIAO, Muhammad T. AFZAL. Progress in the Preparation and Application of Modified Biochar for Improving Heavy Metal Ion Removal From Wastewater[J]. Journal of Bioresources and Bioproducts, 2019, 4(1): 31-42. doi: 10.21967/jbb.v4i1.180
Citation: Patrick M. GODWIN, Yuanfeng PAN, Huining XIAO, Muhammad T. AFZAL. Progress in the Preparation and Application of Modified Biochar for Improving Heavy Metal Ion Removal From Wastewater[J]. Journal of Bioresources and Bioproducts, 2019, 4(1): 31-42. doi: 10.21967/jbb.v4i1.180

Progress in the Preparation and Application of Modified Biochar for Improving Heavy Metal Ion Removal From Wastewater

doi: 10.21967/jbb.v4i1.180
More Information
  • Corresponding author: Yuanfeng PAN, panyf@gxu.edu.cn; Muhammad T. AFZAL, mafzal@unb.ca
  • Received Date: 2018-10-21
  • Accepted Date: 2018-12-01
  • Publish Date: 2019-01-01
  • Modified biochar (BC) is reviewed in its preparation, functionality, application in wastewater treatment and regeneration. The nature of precursor materials, preparatory conditions and modification methods are key factors influencing BC properties. Steam activation is unsuitable for improving BC surface functionality compared with chemical modifications. Alkali-treated BC possesses the highest surface functionality. Both alkali modified BC and nanomaterial impregnated BC composites are highly favorable for enhancing the adsorption of different contaminants from wastewater. Acidic treatment provides more oxygenated functional groups on BC surfaces. Future research should focus on industry-scale applications and competitive sorption for contaminant removal due to scarcity of data.

     

  • loading
  • Ahmad M, Rajapaksha A U, Lim J E, et al., 2014. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99: 19–33. DOI: 10.1016/j.chemosphere. 2013.10.071.
    Ahmed M B, Zhou J L, Ngo H H, et al., 2016. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresource Technology, 214: 836–851. DOI:10.1016/j.biortech. 2016.05.057.
    Ali I, 2010. The quest for active carbon adsorbent substitutes: inexpensive adsorbents for toxic metal ions removal from wastewater. Separation & Purification Reviews, 39(3/4): 95–171. DOI: 10.1080/15422119.2010.527802.
    Antal M J, Grønli M, 2003. The art, science, and technology of charcoal production. Industrial & Engineering Chemistry Research, 42(8): 1619–1640. DOI: 10.1021/ie0207919.
    Bailey S E, Olin T J, Bricka R M, et al., 1999. A review of potentially low-cost sorbents for heavy metals. Water Research, 33(11): 2469–2479. DOI: 10.1016/s0043-1354(98)00475-8.
    Beesley L, Marmiroli M, 2011. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environmental Pollution, 159(2): 474–480. DOI: 10.1016/j.envpol. 2010.10.016.
    Berndes G, Hoogwijk M, van den Broek R, 2003. The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass and Bioenergy, 25(1): 1–28. DOI: 10.1016/s0961-9534(02)00185-x.
    Budarin V L, Clark J H, Lanigan B A, et al., 2009. The preparation of high-grade bio-oils through the controlled, low temperature microwave activation of wheat straw. Bioresource Technology, 100(23): 6064–6068. DOI: 10.1016/j.biortech. 2009.06.068.
    Budarin V L, Zhao Y Z, Gronnow M J, et al., 2011. Microwave-mediated pyrolysis of macro-algae. Green Chemistry, 13(9): 2330. DOI: 10.1039/c1gc15560a.
    Cao X D, Ma L N, Gao B, et al., 2009. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environmental Science & Technology, 43(9): 3285–3291. DOI: 10.1021/ es803092k.
    Cetin E, Moghtaderi B, Gupta R, et al., 2004. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel, 83(16): 2139–2150. DOI: 10.1016/ j.fuel.2004.05.008.
    Chen B L, Chen Z M, Lv S, 2011. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresource Technology, 102(2): 716–723. DOI: 10.1016/j.biortech. 2010.08.067.
    Chen X C, Chen G C, Chen L G, et al., 2011. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource Technology, 102(19): 8877–8884. DOI: 10.1016/j.biortech. 2011.06.078.
    Chen Y W, Wang J L, 2011. Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu(Ⅱ) removal. Chemical Engineering Journal, 168(1): 286–292. DOI: 10.1016/j.cej.2011.01.006.
    Chingombe P, Saha B, Wakeman R J, 2005. Surface modification and characterisation of a coal-based activated carbon. Carbon, 43(15): 3132–3143. DOI: 10.1016/j.carbon.2005. 06.021.
    Cho H H, Wepasnick K, Smith B A, et al., 2010. Sorption of aqueous Zn[II] and Cd[II] by multiwall carbon nanotubes: the relative roles of oxygen-containing functional groups and graphenic carbon. Langmuir, 26(2): 967–981. DOI: 10.1021/ la902440u.
    Demirbas A, 2008. Heavy metal adsorption onto agro-based waste materials: a review. Journal of Hazardous Materials, 157(2/3): 220–229. DOI: 10.1016/j.jhazmat.2008.01.024.
    Devi P, Saroha A K, 2014. Synthesis of the magnetic biochar composites for use as an adsorbent for the removal of pentachlorophenol from the effluent. Bioresource Technology, 169: 525–531. DOI: 10.1016/j.biortech.2014.07.062.
    Domínguez A, Menéndez J A, Fernández Y, et al., 2007. Conventional and microwave induced pyrolysis of coffee hulls for the production of a hydrogen rich fuel gas. Journal of Analytical and Applied Pyrolysis, 79(1/2): 128–135. DOI: 10.1016/j.jaap.2006.08.003.
    Dupont L, Guillon E, 2003. Removal of hexavalent chromium with a lignocellulosic substrate extracted from wheat bran. Environmental Science & Technology, 37(18): 4235–4241. DOI: 10.1021/es0342345.
    Fushimi C, Araki K, Yamaguchi Y, et al., 2003. Effect of heating rate on steam gasification of biomass. 1. Reactivity of char. Industrial & Engineering Chemistry Research, 42(17): 3922–3928. DOI: 10.1021/ie030056c.
    Glaser B, Lehmann J, Zech W, 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal: a review. Biology and Fertility of Soils, 35(4): 219–230. DOI: 10.1007/s00374-002-0466-4.
    Gupta V, Ali I, 2012. Environmental water: advances in treatment, remediation and recycling. Amsterdam: Elsevier.
    Hadjittofi L, Prodromou M, Pashalidis I, 2014. Activated biochar derived from cactus fibres——Preparation, characterization and application on Cu(Ⅱ) removal from aqueous solutions. Bioresource Technology, 159: 460–464. DOI: 10.1016/ j.biortech.2014.03.073.
    Hall D O, 1997. Biomass energy in industrialised countries: a view of the future. Forest Ecology and Management, 91(1): 17–45. DOI: 10.1016/s0378-1127(96)03883-2.
    Harikishore K R D, Lee S M, 2014. Magnetic biochar composite: facile synthesis, characterization, and application for heavy metal removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 454: 96–103. DOI: 10.1016/j. colsurfa.2014.03.105.
    Huang Y F, Kuan W H, Lo S L, et al., 2010. Hydrogen-rich fuel gas from rice straw via microwave-induced pyrolysis. Bioresource Technology, 101(6): 1968–1973. DOI: 10.1016/j. biortech.2009.09.073.
    Inyang M, Gao B, Yao Y, et al., 2012. Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresource Technology, 110: 50–56. DOI: 10.1016/j.biortech.2012.01.072.
    Jiang Y, Gong J L, Zeng G M, et al., 2016. Magnetic chitosan-graphene oxide composite for anti-microbial and dye removal applications. International Journal of Biological Macromolecules, 82: 702–710. DOI: 10.1016/j.ijbiomac.2015. 11.021.
    Jing X R, Wang Y Y, Liu W J, et al., 2014. Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar. Chemical Engineering Journal, 248: 168–174. DOI: 10.1016/j.cej.2014.03.006.
    Kong H L, He J, Gao Y Z, et al., 2011. Cosorption of phenanthrene and mercury(Ⅱ) from aqueous solution by soybean stalk-based biochar. Journal of Agricultural and Food Chemistry, 59(22): 12116–12123. DOI: 10.1021/jf202924a.
    Li H B, Dong X L, da Silva E B, et al., 2017. Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere, 178: 466–478. DOI: 10.1016/j. chemosphere.2017.03.072.
    Lidström P, Tierney J, Wathey B, et al., 2001. Corrigendum to "Microwave assisted organic synthesis: a review" [Tetrahedron 57 (2001) 9225–9283]. Tetrahedron, 57(51): 10229. DOI: 10.1016/s0040-4020(01)01071-7.
    Liu Z G, Zhang F S, Sasai R, 2010. Arsenate removal from water using Fe3O4-loaded activated carbon prepared from waste biomass. Chemical Engineering Journal, 160(1): 57–62. DOI: 10.1016/j.cej.2010.03.003.
    Ma Y, Liu W J, Zhang N, et al., 2014. Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution. Bioresource Technology, 169: 403–408. DOI: 10.1016/j.biortech.2014.07.014.
    Manyà J J, 2012. Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environmental Science & Technology, 46(15): 7939–7954. DOI: 10.1021/es301029g.
    Melligan F, Auccaise R, Novotny E H, et al., 2011. Pressurised pyrolysis of Miscanthus using a fixed bed reactor. Bioresource Technology, 102(3): 3466–3470. DOI: 10.1016/j. biortech.2010.10.129.
    Meng Y Y, Chen D Y, Sun Y T, et al., 2015. Adsorption of Cu2+ ions using chitosan-modified magnetic Mn ferrite nanoparticles synthesized by microwave-assisted hydrothermal method. Applied Surface Science, 324: 745–750. DOI: 10.1016/j. apsusc.2014.11.028.
    Miura M, Kaga H, Sakurai A, et al., 2004. Rapid pyrolysis of wood block by microwave heating. Journal of Analytical and Applied Pyrolysis, 71(1): 187–199. DOI: 10.1016/s0165- 2370(03)00087-1.
    Mohamed B A, Ellis N, Kim C S, et al., 2017. The role of tailored biochar in increasing plant growth, and reducing bioavailability, phytotoxicity, and uptake of heavy metals in contaminated soil. Environmental Pollution, 230: 329–338. DOI: 10.1016/j.envpol.2017.06.075.
    Mohan D, Kumar H, Sarswat A, et al., 2014. Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. Chemical Engineering Journal, 236: 513– 528. DOI: 10.1016/j.cej.2013.09.057.
    Mohan D, Pittman C U Jr, Bricka M, et al., 2007. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. Journal of Colloid and Interface Science, 310(1): 57–73. DOI: 10.1016/j.jcis.2007.01.020.
    Motasemi F, Afzal M T, 2013. A review on the microwave-assisted pyrolysis technique. Renewable and Sustainable Energy Reviews, 28: 317–330. DOI: 10.1016/j.rser. 2013.08.008.
    Mukherjee A, Zimmerman A R, Harris W, 2011. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma, 163(3/4): 247–255. DOI: 10.1016/j.geoderma. 2011.04.021.
    Mun S P, Cai Z Y, Zhang J L, 2013. Magnetic separation of carbon-encapsulated Fe nanoparticles from thermally-treated wood char. Materials Letters, 96: 5–7. DOI: 10.1016/j.matlet. 2013.01.006.
    Nhuchhen D R, Afzal M T, Dreise T, et al., 2018. Characteristics of biochar and bio-oil produced from wood pellets pyrolysis using a bench scale fixed bed, microwave reactor. Biomass and Bioenergy, 119: 293–303. DOI: 10.1016/j.biombioe. 2018.09.035.
    Panwar N L, Kaushik S C, Kothari S, 2011. Role of renewable energy sources in environmental protection: a review. Renewable and Sustainable Energy Reviews, 15(3): 1513–1524. DOI: 10.1016/j.rser.2010.11.037.
    Park J H, Ok Y S, Kim S H, et al., 2016. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere, 142: 77–83. DOI: 10.1016/j.chemosphere. 2015.05.093.
    Rajapaksha A U, Chen S S, Tsang D C W, et al., 2016. Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere, 148: 276–291. DOI: 10.1016/ j.chemosphere.2016.01.043.
    Ruthiraan M, Mubarak N M, Thines R K, et al., 2015. Comparative kinetic study of functionalized carbon nanotubes and magnetic biochar for removal of Cd2+ ions from wastewater. Korean Journal of Chemical Engineering, 32(3): 446–457. DOI: 10.1007/s11814-014-0260-7.
    Salema A A, Afzal M T, Bennamoun L, 2017. Pyrolysis of corn stalk biomass briquettes in a scaled-up microwave technology. Bioresource Technology, 233: 353–362. DOI: 10.1016/j.biortech.2017.02.113.
    Saravanan P, Vinod V T P, Sreedhar B, et al., 2012. Gum kondagogu modified magnetic nano-adsorbent: an efficient protocol for removal of various toxic metal ions. Materials Science and Engineering: C, 32(3): 581–586. DOI: 10.1016/j. msec.2011.12.015.
    Shafeeyan M S, Daud W M A W, Houshmand A, et al., 2010. A review on surface modification of activated carbon for carbon dioxide adsorption. Journal of Analytical and Applied Pyrolysis, 89(2): 143–151. DOI: 10.1016/j.jaap.2010.07.006.
    Shafeeyan M S, Daud W M A W, Houshmand A, et al., 2010. A review on surface modification of activated carbon for carbon dioxide adsorption. Journal of Analytical and Applied Pyrolysis, 89(2): 143–151. DOI: 10.1016/j.jaap.2010.07.006.
    Sounthararajah D P, Loganathan P, Kandasamy J, et al., 2015. Adsorptive removal of heavy metals from water using sodium titanate nanofibres loaded onto GAC in fixed-bed columns. Journal of Hazardous Materials, 287: 306–316. DOI: 10.1016/j.jhazmat.2015.01.067.
    Tan G C, Sun W L, Xu Y R, et al., 2016. Sorption of mercury (Ⅱ) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution. Bioresource Technology, 211: 727–735. DOI: 10.1016/j.biortech.2016. 03.147.
    Tan Z Q, Qiu J R, Zeng H C, et al., 2011. Removal of elemental mercury by bamboo charcoal impregnated with H2O2. Fuel, 90(4): 1471–1475. DOI: 10.1016/j.fuel.2010.12.004.
    Theydan S K, Ahmed M J, 2012. Adsorption of methylene blue onto biomass-based activated carbon by FeCl3 activation: Equilibrium, kinetics, and thermodynamic studies. Journal of Analytical and Applied Pyrolysis, 97: 116–122. DOI: 10.1016/ j.jaap.2012.05.008.
    Thines K R, Abdullah E C, Mubarak N M, et al., 2017. Synthesis of magnetic biochar from agricultural waste biomass to enhancing Route for waste water and polymer application: a review. Renewable and Sustainable Energy Reviews, 67: 257–276. DOI: 10.1016/j.rser.2016.09.057.
    Uchimiya M, Chang S, Klasson K T, 2011. Screening biochars for heavy metal retention in soil: role of oxygen functional groups. Journal of Hazardous Materials, 190(1/2/3): 432–441. DOI: 10.1016/j.jhazmat.2011.03.063.
    Vithanage M, Rajapaksha A U, Ahmad M, et al., 2015. Mechanisms of antimony adsorption onto soybean stover-derived biochar in aqueous solutions. Journal of Environmental Management, 151: 443–449. DOI: 10.1016/j.jenvman.2014. 11.005.
    Wang N X, Zhang X Y, Wu J, et al., 2012. Effects of microcystin-LR on the metal bioaccumulation and toxicity in Chlamydomonas reinhardtii. Water Research, 46(2): 369–377. DOI: 10.1016/j.watres.2011.10.035.
    Wang S S, Gao B, Zimmerman A R, et al., 2015. Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresource Technology, 175: 391–395. DOI: 10.1016/j.biortech.2014.10.104.
    Wang S Y, Tang Y K, Chen C, et al., 2015. Regeneration of magnetic biochar derived from eucalyptus leaf residue for lead(Ⅱ) removal. Bioresource Technology, 186: 360–364. DOI: 10.1016/j.biortech.2015.03.139.
    Wang W, Wang X J, Wang X, et al., 2013. Cr(Ⅵ) removal from aqueous solution with bamboo charcoal chemically modified by iron and cobalt with the assistance of microwave. Journal of Environmental Sciences, 25(9): 1726–1735. DOI: 10.1016/ s1001-0742(12)60247-2.
    Wang X J, Wang Y, Wang X, et al., 2011. Microwave-assisted preparation of bamboo charcoal-based iron-containing adsorbents for Cr(Ⅵ) removal. Chemical Engineering Journal, 174(1): 326–332. DOI: 10.1016/j.cej.2011.09.044.
    Wang Y, Wang X J, Liu M, et al., 2012. Cr(Ⅵ) removal from water using cobalt-coated bamboo charcoal prepared with microwave heating. Industrial Crops and Products, 39: 81–88. DOI: 10.1016/j.indcrop.2012.02.015.
    Wang Y, Wang X, Wang X J, et al., 2013. Adsorption of Pb(Ⅱ) from aqueous solution to Ni-doped bamboo charcoal. Journal of Industrial and Engineering Chemistry, 19(1): 353–359. DOI: 10.1016/j.jiec.2012.08.024.
    Xu X Y, Cao X D, Zhao L, et al., 2013. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environmental Science and Pollution Research, 20(1): 358–368. DOI: 10.1007/s11356-012-0873-5.
    Xue Y W, Gao B, Yao Y, et al., 2012. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests. Chemical Engineering Journal, 200/201/202: 673–680. DOI: 10.1016/j.cej.2012.06.116.
    Yagmur E, Ozmak M, Aktas Z, 2008. A novel method for production of activated carbon from waste tea by chemical activation with microwave energy. Fuel, 87(15/16): 3278–3285. DOI: 10.1016/j.fuel.2008.05.005.
    Yakout S M, Daifullah A E H M, El-Reefy S A, 2015. Pore structure characterization of chemically modified biochar derived from rice straw. Environmental Engineering and Management Journal, 14(2): 473–480. DOI: 10.30638/eemj.2015. 049.
    Yang G X, Jiang H, 2014. Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water Research, 48: 396–405. DOI: 10.1016/j.watres. 2013.09.050.
    Yong S K, Bolan N S, Lombi E, et al., 2013. Sulfur-containing chitin and chitosan derivatives as trace metal adsorbents: a review. Critical Reviews in Environmental Science and Technology, 43(16): 1741–1794. DOI: 10.1080/10643389. 2012.671734.
    Yu J X, Wang L Y, Chi R A, et al., 2013. Competitive adsorption of Pb2+ and Cd2+ on magnetic modified sugarcane bagasse prepared by two simple steps. Applied Surface Science, 268: 163–170. DOI: 10.1016/j.apsusc.2012.12.047.
    Zhang M, Gao B, Varnoosfaderani S, et al., 2013. Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresource Technology, 130: 457–462. DOI: 10.1016/j.biortech.2012.11.132.
    Zhang Z S, Wang X J, Wang Y, et al., 2013. Pb(Ⅱ) removal from water using Fe-coated bamboo charcoal with the assistance of microwaves. Journal of Environmental Sciences, 25(5): 1044–1053. DOI: 10.1016/s1001-0742(12)60144-2.
    Zhou F S, Wang H, Fang S G, et al., 2015. Pb(Ⅱ), Cr(Ⅵ) and atrazine sorption behavior on sludge-derived biochar: role of humic acids. Environmental Science and Pollution Research, 22(20): 16031–16039. DOI: 10.1007/s11356-015-4818-7.
    Zhou Y M, Gao B, Zimmerman A R, et al., 2013. Sorption of heavy metals on chitosan-modified biochars and its biological effects. Chemical Engineering Journal, 231: 512–518. DOI: 10.1016/j.cej.2013.07.036.
    Zhu X D, Liu Y C, Luo G, et al., 2014. Facile fabrication of magnetic carbon composites from hydrochar via simultaneous activation and magnetization for triclosan adsorption. Environmental Science http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7affa980471016a8f8481853175da6dd
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (1230) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return