Citation: | Patrick M. GODWIN, Yuanfeng PAN, Huining XIAO, Muhammad T. AFZAL. Progress in the Preparation and Application of Modified Biochar for Improving Heavy Metal Ion Removal From Wastewater[J]. Journal of Bioresources and Bioproducts, 2019, 4(1): 31-42. doi: 10.21967/jbb.v4i1.180 |
Ahmad M, Rajapaksha A U, Lim J E, et al., 2014. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99: 19–33. DOI: 10.1016/j.chemosphere. 2013.10.071.
|
Ahmed M B, Zhou J L, Ngo H H, et al., 2016. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresource Technology, 214: 836–851. DOI:10.1016/j.biortech. 2016.05.057.
|
Ali I, 2010. The quest for active carbon adsorbent substitutes: inexpensive adsorbents for toxic metal ions removal from wastewater. Separation & Purification Reviews, 39(3/4): 95–171. DOI: 10.1080/15422119.2010.527802.
|
Antal M J, Grønli M, 2003. The art, science, and technology of charcoal production. Industrial & Engineering Chemistry Research, 42(8): 1619–1640. DOI: 10.1021/ie0207919.
|
Bailey S E, Olin T J, Bricka R M, et al., 1999. A review of potentially low-cost sorbents for heavy metals. Water Research, 33(11): 2469–2479. DOI: 10.1016/s0043-1354(98)00475-8.
|
Beesley L, Marmiroli M, 2011. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environmental Pollution, 159(2): 474–480. DOI: 10.1016/j.envpol. 2010.10.016.
|
Berndes G, Hoogwijk M, van den Broek R, 2003. The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass and Bioenergy, 25(1): 1–28. DOI: 10.1016/s0961-9534(02)00185-x.
|
Budarin V L, Clark J H, Lanigan B A, et al., 2009. The preparation of high-grade bio-oils through the controlled, low temperature microwave activation of wheat straw. Bioresource Technology, 100(23): 6064–6068. DOI: 10.1016/j.biortech. 2009.06.068.
|
Budarin V L, Zhao Y Z, Gronnow M J, et al., 2011. Microwave-mediated pyrolysis of macro-algae. Green Chemistry, 13(9): 2330. DOI: 10.1039/c1gc15560a.
|
Cao X D, Ma L N, Gao B, et al., 2009. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environmental Science & Technology, 43(9): 3285–3291. DOI: 10.1021/ es803092k.
|
Cetin E, Moghtaderi B, Gupta R, et al., 2004. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel, 83(16): 2139–2150. DOI: 10.1016/ j.fuel.2004.05.008.
|
Chen B L, Chen Z M, Lv S, 2011. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresource Technology, 102(2): 716–723. DOI: 10.1016/j.biortech. 2010.08.067.
|
Chen X C, Chen G C, Chen L G, et al., 2011. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource Technology, 102(19): 8877–8884. DOI: 10.1016/j.biortech. 2011.06.078.
|
Chen Y W, Wang J L, 2011. Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu(Ⅱ) removal. Chemical Engineering Journal, 168(1): 286–292. DOI: 10.1016/j.cej.2011.01.006.
|
Chingombe P, Saha B, Wakeman R J, 2005. Surface modification and characterisation of a coal-based activated carbon. Carbon, 43(15): 3132–3143. DOI: 10.1016/j.carbon.2005. 06.021.
|
Cho H H, Wepasnick K, Smith B A, et al., 2010. Sorption of aqueous Zn[II] and Cd[II] by multiwall carbon nanotubes: the relative roles of oxygen-containing functional groups and graphenic carbon. Langmuir, 26(2): 967–981. DOI: 10.1021/ la902440u.
|
Demirbas A, 2008. Heavy metal adsorption onto agro-based waste materials: a review. Journal of Hazardous Materials, 157(2/3): 220–229. DOI: 10.1016/j.jhazmat.2008.01.024.
|
Devi P, Saroha A K, 2014. Synthesis of the magnetic biochar composites for use as an adsorbent for the removal of pentachlorophenol from the effluent. Bioresource Technology, 169: 525–531. DOI: 10.1016/j.biortech.2014.07.062.
|
Domínguez A, Menéndez J A, Fernández Y, et al., 2007. Conventional and microwave induced pyrolysis of coffee hulls for the production of a hydrogen rich fuel gas. Journal of Analytical and Applied Pyrolysis, 79(1/2): 128–135. DOI: 10.1016/j.jaap.2006.08.003.
|
Dupont L, Guillon E, 2003. Removal of hexavalent chromium with a lignocellulosic substrate extracted from wheat bran. Environmental Science & Technology, 37(18): 4235–4241. DOI: 10.1021/es0342345.
|
Fushimi C, Araki K, Yamaguchi Y, et al., 2003. Effect of heating rate on steam gasification of biomass. 1. Reactivity of char. Industrial & Engineering Chemistry Research, 42(17): 3922–3928. DOI: 10.1021/ie030056c.
|
Glaser B, Lehmann J, Zech W, 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal: a review. Biology and Fertility of Soils, 35(4): 219–230. DOI: 10.1007/s00374-002-0466-4.
|
Gupta V, Ali I, 2012. Environmental water: advances in treatment, remediation and recycling. Amsterdam: Elsevier.
|
Hadjittofi L, Prodromou M, Pashalidis I, 2014. Activated biochar derived from cactus fibres——Preparation, characterization and application on Cu(Ⅱ) removal from aqueous solutions. Bioresource Technology, 159: 460–464. DOI: 10.1016/ j.biortech.2014.03.073.
|
Hall D O, 1997. Biomass energy in industrialised countries: a view of the future. Forest Ecology and Management, 91(1): 17–45. DOI: 10.1016/s0378-1127(96)03883-2.
|
Harikishore K R D, Lee S M, 2014. Magnetic biochar composite: facile synthesis, characterization, and application for heavy metal removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 454: 96–103. DOI: 10.1016/j. colsurfa.2014.03.105.
|
Huang Y F, Kuan W H, Lo S L, et al., 2010. Hydrogen-rich fuel gas from rice straw via microwave-induced pyrolysis. Bioresource Technology, 101(6): 1968–1973. DOI: 10.1016/j. biortech.2009.09.073.
|
Inyang M, Gao B, Yao Y, et al., 2012. Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresource Technology, 110: 50–56. DOI: 10.1016/j.biortech.2012.01.072.
|
Jiang Y, Gong J L, Zeng G M, et al., 2016. Magnetic chitosan-graphene oxide composite for anti-microbial and dye removal applications. International Journal of Biological Macromolecules, 82: 702–710. DOI: 10.1016/j.ijbiomac.2015. 11.021.
|
Jing X R, Wang Y Y, Liu W J, et al., 2014. Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar. Chemical Engineering Journal, 248: 168–174. DOI: 10.1016/j.cej.2014.03.006.
|
Kong H L, He J, Gao Y Z, et al., 2011. Cosorption of phenanthrene and mercury(Ⅱ) from aqueous solution by soybean stalk-based biochar. Journal of Agricultural and Food Chemistry, 59(22): 12116–12123. DOI: 10.1021/jf202924a.
|
Li H B, Dong X L, da Silva E B, et al., 2017. Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere, 178: 466–478. DOI: 10.1016/j. chemosphere.2017.03.072.
|
Lidström P, Tierney J, Wathey B, et al., 2001. Corrigendum to "Microwave assisted organic synthesis: a review" [Tetrahedron 57 (2001) 9225–9283]. Tetrahedron, 57(51): 10229. DOI: 10.1016/s0040-4020(01)01071-7.
|
Liu Z G, Zhang F S, Sasai R, 2010. Arsenate removal from water using Fe3O4-loaded activated carbon prepared from waste biomass. Chemical Engineering Journal, 160(1): 57–62. DOI: 10.1016/j.cej.2010.03.003.
|
Ma Y, Liu W J, Zhang N, et al., 2014. Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution. Bioresource Technology, 169: 403–408. DOI: 10.1016/j.biortech.2014.07.014.
|
Manyà J J, 2012. Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environmental Science & Technology, 46(15): 7939–7954. DOI: 10.1021/es301029g.
|
Melligan F, Auccaise R, Novotny E H, et al., 2011. Pressurised pyrolysis of Miscanthus using a fixed bed reactor. Bioresource Technology, 102(3): 3466–3470. DOI: 10.1016/j. biortech.2010.10.129.
|
Meng Y Y, Chen D Y, Sun Y T, et al., 2015. Adsorption of Cu2+ ions using chitosan-modified magnetic Mn ferrite nanoparticles synthesized by microwave-assisted hydrothermal method. Applied Surface Science, 324: 745–750. DOI: 10.1016/j. apsusc.2014.11.028.
|
Miura M, Kaga H, Sakurai A, et al., 2004. Rapid pyrolysis of wood block by microwave heating. Journal of Analytical and Applied Pyrolysis, 71(1): 187–199. DOI: 10.1016/s0165- 2370(03)00087-1.
|
Mohamed B A, Ellis N, Kim C S, et al., 2017. The role of tailored biochar in increasing plant growth, and reducing bioavailability, phytotoxicity, and uptake of heavy metals in contaminated soil. Environmental Pollution, 230: 329–338. DOI: 10.1016/j.envpol.2017.06.075.
|
Mohan D, Kumar H, Sarswat A, et al., 2014. Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. Chemical Engineering Journal, 236: 513– 528. DOI: 10.1016/j.cej.2013.09.057.
|
Mohan D, Pittman C U Jr, Bricka M, et al., 2007. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. Journal of Colloid and Interface Science, 310(1): 57–73. DOI: 10.1016/j.jcis.2007.01.020.
|
Motasemi F, Afzal M T, 2013. A review on the microwave-assisted pyrolysis technique. Renewable and Sustainable Energy Reviews, 28: 317–330. DOI: 10.1016/j.rser. 2013.08.008.
|
Mukherjee A, Zimmerman A R, Harris W, 2011. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma, 163(3/4): 247–255. DOI: 10.1016/j.geoderma. 2011.04.021.
|
Mun S P, Cai Z Y, Zhang J L, 2013. Magnetic separation of carbon-encapsulated Fe nanoparticles from thermally-treated wood char. Materials Letters, 96: 5–7. DOI: 10.1016/j.matlet. 2013.01.006.
|
Nhuchhen D R, Afzal M T, Dreise T, et al., 2018. Characteristics of biochar and bio-oil produced from wood pellets pyrolysis using a bench scale fixed bed, microwave reactor. Biomass and Bioenergy, 119: 293–303. DOI: 10.1016/j.biombioe. 2018.09.035.
|
Panwar N L, Kaushik S C, Kothari S, 2011. Role of renewable energy sources in environmental protection: a review. Renewable and Sustainable Energy Reviews, 15(3): 1513–1524. DOI: 10.1016/j.rser.2010.11.037.
|
Park J H, Ok Y S, Kim S H, et al., 2016. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere, 142: 77–83. DOI: 10.1016/j.chemosphere. 2015.05.093.
|
Rajapaksha A U, Chen S S, Tsang D C W, et al., 2016. Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere, 148: 276–291. DOI: 10.1016/ j.chemosphere.2016.01.043.
|
Ruthiraan M, Mubarak N M, Thines R K, et al., 2015. Comparative kinetic study of functionalized carbon nanotubes and magnetic biochar for removal of Cd2+ ions from wastewater. Korean Journal of Chemical Engineering, 32(3): 446–457. DOI: 10.1007/s11814-014-0260-7.
|
Salema A A, Afzal M T, Bennamoun L, 2017. Pyrolysis of corn stalk biomass briquettes in a scaled-up microwave technology. Bioresource Technology, 233: 353–362. DOI: 10.1016/j.biortech.2017.02.113.
|
Saravanan P, Vinod V T P, Sreedhar B, et al., 2012. Gum kondagogu modified magnetic nano-adsorbent: an efficient protocol for removal of various toxic metal ions. Materials Science and Engineering: C, 32(3): 581–586. DOI: 10.1016/j. msec.2011.12.015.
|
Shafeeyan M S, Daud W M A W, Houshmand A, et al., 2010. A review on surface modification of activated carbon for carbon dioxide adsorption. Journal of Analytical and Applied Pyrolysis, 89(2): 143–151. DOI: 10.1016/j.jaap.2010.07.006.
|
Shafeeyan M S, Daud W M A W, Houshmand A, et al., 2010. A review on surface modification of activated carbon for carbon dioxide adsorption. Journal of Analytical and Applied Pyrolysis, 89(2): 143–151. DOI: 10.1016/j.jaap.2010.07.006.
|
Sounthararajah D P, Loganathan P, Kandasamy J, et al., 2015. Adsorptive removal of heavy metals from water using sodium titanate nanofibres loaded onto GAC in fixed-bed columns. Journal of Hazardous Materials, 287: 306–316. DOI: 10.1016/j.jhazmat.2015.01.067.
|
Tan G C, Sun W L, Xu Y R, et al., 2016. Sorption of mercury (Ⅱ) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution. Bioresource Technology, 211: 727–735. DOI: 10.1016/j.biortech.2016. 03.147.
|
Tan Z Q, Qiu J R, Zeng H C, et al., 2011. Removal of elemental mercury by bamboo charcoal impregnated with H2O2. Fuel, 90(4): 1471–1475. DOI: 10.1016/j.fuel.2010.12.004.
|
Theydan S K, Ahmed M J, 2012. Adsorption of methylene blue onto biomass-based activated carbon by FeCl3 activation: Equilibrium, kinetics, and thermodynamic studies. Journal of Analytical and Applied Pyrolysis, 97: 116–122. DOI: 10.1016/ j.jaap.2012.05.008.
|
Thines K R, Abdullah E C, Mubarak N M, et al., 2017. Synthesis of magnetic biochar from agricultural waste biomass to enhancing Route for waste water and polymer application: a review. Renewable and Sustainable Energy Reviews, 67: 257–276. DOI: 10.1016/j.rser.2016.09.057.
|
Uchimiya M, Chang S, Klasson K T, 2011. Screening biochars for heavy metal retention in soil: role of oxygen functional groups. Journal of Hazardous Materials, 190(1/2/3): 432–441. DOI: 10.1016/j.jhazmat.2011.03.063.
|
Vithanage M, Rajapaksha A U, Ahmad M, et al., 2015. Mechanisms of antimony adsorption onto soybean stover-derived biochar in aqueous solutions. Journal of Environmental Management, 151: 443–449. DOI: 10.1016/j.jenvman.2014. 11.005.
|
Wang N X, Zhang X Y, Wu J, et al., 2012. Effects of microcystin-LR on the metal bioaccumulation and toxicity in Chlamydomonas reinhardtii. Water Research, 46(2): 369–377. DOI: 10.1016/j.watres.2011.10.035.
|
Wang S S, Gao B, Zimmerman A R, et al., 2015. Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresource Technology, 175: 391–395. DOI: 10.1016/j.biortech.2014.10.104.
|
Wang S Y, Tang Y K, Chen C, et al., 2015. Regeneration of magnetic biochar derived from eucalyptus leaf residue for lead(Ⅱ) removal. Bioresource Technology, 186: 360–364. DOI: 10.1016/j.biortech.2015.03.139.
|
Wang W, Wang X J, Wang X, et al., 2013. Cr(Ⅵ) removal from aqueous solution with bamboo charcoal chemically modified by iron and cobalt with the assistance of microwave. Journal of Environmental Sciences, 25(9): 1726–1735. DOI: 10.1016/ s1001-0742(12)60247-2.
|
Wang X J, Wang Y, Wang X, et al., 2011. Microwave-assisted preparation of bamboo charcoal-based iron-containing adsorbents for Cr(Ⅵ) removal. Chemical Engineering Journal, 174(1): 326–332. DOI: 10.1016/j.cej.2011.09.044.
|
Wang Y, Wang X J, Liu M, et al., 2012. Cr(Ⅵ) removal from water using cobalt-coated bamboo charcoal prepared with microwave heating. Industrial Crops and Products, 39: 81–88. DOI: 10.1016/j.indcrop.2012.02.015.
|
Wang Y, Wang X, Wang X J, et al., 2013. Adsorption of Pb(Ⅱ) from aqueous solution to Ni-doped bamboo charcoal. Journal of Industrial and Engineering Chemistry, 19(1): 353–359. DOI: 10.1016/j.jiec.2012.08.024.
|
Xu X Y, Cao X D, Zhao L, et al., 2013. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environmental Science and Pollution Research, 20(1): 358–368. DOI: 10.1007/s11356-012-0873-5.
|
Xue Y W, Gao B, Yao Y, et al., 2012. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests. Chemical Engineering Journal, 200/201/202: 673–680. DOI: 10.1016/j.cej.2012.06.116.
|
Yagmur E, Ozmak M, Aktas Z, 2008. A novel method for production of activated carbon from waste tea by chemical activation with microwave energy. Fuel, 87(15/16): 3278–3285. DOI: 10.1016/j.fuel.2008.05.005.
|
Yakout S M, Daifullah A E H M, El-Reefy S A, 2015. Pore structure characterization of chemically modified biochar derived from rice straw. Environmental Engineering and Management Journal, 14(2): 473–480. DOI: 10.30638/eemj.2015. 049.
|
Yang G X, Jiang H, 2014. Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water Research, 48: 396–405. DOI: 10.1016/j.watres. 2013.09.050.
|
Yong S K, Bolan N S, Lombi E, et al., 2013. Sulfur-containing chitin and chitosan derivatives as trace metal adsorbents: a review. Critical Reviews in Environmental Science and Technology, 43(16): 1741–1794. DOI: 10.1080/10643389. 2012.671734.
|
Yu J X, Wang L Y, Chi R A, et al., 2013. Competitive adsorption of Pb2+ and Cd2+ on magnetic modified sugarcane bagasse prepared by two simple steps. Applied Surface Science, 268: 163–170. DOI: 10.1016/j.apsusc.2012.12.047.
|
Zhang M, Gao B, Varnoosfaderani S, et al., 2013. Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresource Technology, 130: 457–462. DOI: 10.1016/j.biortech.2012.11.132.
|
Zhang Z S, Wang X J, Wang Y, et al., 2013. Pb(Ⅱ) removal from water using Fe-coated bamboo charcoal with the assistance of microwaves. Journal of Environmental Sciences, 25(5): 1044–1053. DOI: 10.1016/s1001-0742(12)60144-2.
|
Zhou F S, Wang H, Fang S G, et al., 2015. Pb(Ⅱ), Cr(Ⅵ) and atrazine sorption behavior on sludge-derived biochar: role of humic acids. Environmental Science and Pollution Research, 22(20): 16031–16039. DOI: 10.1007/s11356-015-4818-7.
|
Zhou Y M, Gao B, Zimmerman A R, et al., 2013. Sorption of heavy metals on chitosan-modified biochars and its biological effects. Chemical Engineering Journal, 231: 512–518. DOI: 10.1016/j.cej.2013.07.036.
|
Zhu X D, Liu Y C, Luo G, et al., 2014. Facile fabrication of magnetic carbon composites from hydrochar via simultaneous activation and magnetization for triclosan adsorption. Environmental Science http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7affa980471016a8f8481853175da6dd
|