Volume 4 Issue 2
Feb.  2019
Article Contents
Turn off MathJax

Citation:

Sulfonation of Hydroxymethylated Lignin and Its Application

  • Corresponding author: Pedram FATEHI, pfatehi@lakeheadu.ca
  • Received Date: 2019-03-21
    Accepted Date: 2019-04-10
    Fund Project:

    The authors thank Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Research Chairs, Canada Foundation for Innovation, Ontario Research Fund and Northern Ontario Heritage Fund Corporation programs for supporting this research.

  • To valorize kraft lignin, hydroxymethylation and sulfonation were applied on this under-utilized, but vastly available, material. The hydroxymethylation pretreatment was conducted as means to improve the reactivity of lignin. The sulfonation of hydroxymethylated kraft lignin was investigated by sulfuric acid and sodium sulfite treatments under various conditions. The modified lignin samples were characterized for their charge density, solubility, elemental components, and molecular weights. The results showed that the hydroxymethylation facilitated the sulfonation by sodium sulfite, yielding a product (SSH-lignin) with the charge density of -1.2 meq/g and water solubility of 10 g/L under the conditions of H2SO3/lignin molar ratio of 0.49 mol/mol, 95℃ and 3 h. On the other hand, hydroxymethylation hindered the sulfonation of lignin by sulfuric acid, yielding a product (SAH-lignin) with the charge density of -0.46 meq/g and solubility of 0.9 g/L under the conditions of H2SO4/lignin molar ratio of 14.8 mol/mol, 80℃ and 1 h. The SSH-lignin had a high adsorption on kaolinite (17 mg/g) at a lignin concentration of 40 g/L. The sulfonated lignins were also found to be effective coagulant for the cationic dye ethyl violet.
  • 加载中
  • [1]

    Alonso M V, Oliet M, Rodrı́guez F, et al., 2005. Modification of ammonium lignosulfonate by phenolation for use in phenolic resins. Bioresource Technology, 96(9):1013-1018. DOI:10.1016/j.biortech.2004.09.009.
    [2]

    Arevalo-Gallegos A, Ahmad Z, Asgher M, et al., 2017. Ligno-cellulose:a sustainable material to produce value-added products with a zero waste approach:a review. International Journal of Biological Macromolecules, 99:308-318. DOI:10.1016/j.ijbiomac.2017.02.097.
    [3]

    Aro T, Fatehi P, 2017. Production and application of lignosul-fonates and sulfonated lignin. ChemSusChem, 10(9):1861- 1877. DOI:10.1002/cssc.201700082.
    [4]

    Benar P, Gonçalves A R, Mandelli D, et al., 1999. Eucalyptus organosolv lignins:study of the hydroxymethylation and use in resols. Bioresource Technology, 68(1):11-16. DOI:10.1016/s0960-8524(98)00076-5.
    [5]

    Bleischwitz R, Welfens P J J, Zhang Z X, 2009. Conclusions[M]//Bleischwitz R, Welfens P J J, Zhang Z X, eds. Sustainable Growth and Resource Productivity:Economic and Global Policy Issues. Greenleaf Publishing Limited:338-341. DOI:10.9774/gleaf.978-1-907643-06-4_18
    [6]

    Cerfontain H, Lambrechts H J A, Schaasberg-Nienhuis Z R H, et al., 1985. Aromatic sulphonation. Part 91. The sulphonation of anisole, phenol, phenyl methanesulphonate, potassium phenyl sulphate, and a series of methyl-, bromo-, and chloro- substituted anisoles and phenols in concentrated aqueous sulphuric acid. Journal of the Chemical Society, Perkin Transactions, 2(5):659. DOI:10.1039/p29850000659.
    [7]

    Doherty W O S, Mousavioun P, Fellows C M, 2011. Value- adding to cellulosic ethanol:lignin polymers. Industrial Crops and Products, 33(2):259-276. DOI:10.1016/j.indcrop.2010. 10.022.
    [8]

    Fang R, Cheng X S, Xu X R, 2010. Synthesis of lignin-base cationic flocculant and its application in removing anionic azo-dyes from simulated wastewater. Bioresource Technology, 101(19):7323-7329. DOI:10.1016/j.biortech.2010.04.094.
    [9]

    Fatehi P, Hamdan F C, Ni Y H, 2013. Adsorption of lignocelluloses of pre-hydrolysis liquor on calcium carbonate to induce functional filler. Carbohydrate Polymers, 94(1):531-538. DOI:10.1016/j.carbpol.2013.01.081.
    [10]

    Fatehi P, McArthur T, Xiao H, et al., 2010. Improving the strength of old corrugated carton pulp (OCC) using a dry strength additive. Appita Journal, 63:364-369.
    [11]

    Gao W J, Inwood J P W, Fatehi P, 2019. Sulfonation of phenolated kraft lignin to produce water soluble products. Journal of Wood Chemistry and Technology, 1-17. DOI:10.1080/02773813.2019.1565866.
    [12]

    Gellerstedt G, 2015. Softwood kraft lignin:raw material for the future. Industrial Crops and Products, 77:845-854. DOI:10.1016/j.indcrop.2015.09.040
    [13]

    Gierer J, Lenz B, Wallin N H, et al., 1964. The reactions of lignin during sulphate cooking. Part V. model experiments on the splitting of aryl-alkyl ether linkages by 2N sodium hydroxide and by white liquor. Acta Chemica Scandinavica, 18:1469-1476. DOI:10.3891/acta.chem.scand.18-1469.
    [14]

    Gierer J, Pettersson I, 1977. Studies on the condensation of lignins in alkaline media. Part Ⅱ. The formation of stilbene and arylcoumaran structures through neighbouring group participation reactions. Canadian Journal of Chemistry, 55(4):593-599. DOI:10.1139/v77-084.
    [15]

    Gonçalves A R, Benar P, 2001. Hydroxymethylation and oxidation of Organosolv lignins and utilization of the products. Bioresource Technology, 79(2):103-111. DOI:10.1016/s0960- 8524(01)00056-6.
    [16]

    Gosselink R J A, Abächerli A, Semke H, et al., 2004. Analytical protocols for characterisation of sulphur-free lignin. Industrial Crops and Products, 19(3):271-281. DOI:10.1016/j.indcrop. 2003.10.008.
    [17]

    He W M, Fatehi P, 2015. Preparation of sulfomethylated softwood kraft lignin as a dispersant for cement admixture. RSC Advances, 5(58):47031-47039. DOI:10.1039/c5ra04526f.
    [18]

    Hedges J I, Cowie G L, Ertel J R, et al., 1985. Degradation of carbohydrates and lignins in buried woods. Geochimica et Cosmochimica Acta, 49(3):701-711. DOI:10.1016/0016- 7037(85)90165-6.
    [19]

    Hedjazi S, Kordsachia O, Patt R, et al., 2009. Alkaline sulfite- anthraquinone (AS/AQ) pulping of wheat straw and totally chlorine free (TCF) bleaching of pulps. Industrial Crops and Products, 29(1):27-36. DOI:10.1016/j.indcrop.2008.03.013.
    [20]

    Helander M, Theliander H, Lawoko M, et al., 2013. Fractionation of technical lignin:molecular mass and ph effects. BioRes-ources, 8(2):2270-2282. DOI:10.15376/biores.8.2.2270-2282.
    [21]

    Holmberg R, 1935. Etyllignin och thioglykolsyre. Svensk Kem. Tidskr, 57:58.
    [22]

    Hu L, Pan H, Zhou Y, et al., 2011. Methods to improve lignin's reactivity as a phenol substiture and as replacement for other phenolic compounds:a brief review. BioResources, 6(3):3515-3525.
    [23]

    Inwood J P W, Pakzad L, Fatehi P, 2017. Production of sulfur containing kraft lignin products. BioResources, 13(1):53-70. DOI:10.15376/biores.13.1.53-70.
    [24]

    Joelsson J M, Gustavsson L, 2012. Reductions in greenhouse gas emissions and oil use by DME (Di-methyl ether) and FT (Fischer-Tropsch) diesel production in chemical pulp mills. Energy, 39(1):363-374. DOI:10.1016/j.energy.2012.01.001.
    [25]

    Konduri M K R, Fatehi P, 2015. Production of water-soluble hardwood kraft lignin via sulfomethylation using formaldehyde and sodium sulfite. ACS Sustainable Chemistry & Engineering, 3(6):1172-1182. DOI:10.1021/acssuschemeng.5b00098.
    [26]

    Laurichesse S, Avérous L, 2014. Chemical modification of lignins:towards biobased polymers. Progress in Polymer Science, 39(7):1266-1290. DOI:10.1016/j.progpolymsci.2013.11.004.
    [27]

    Liu D, Peng Y J, 2015. Understanding different roles of lignosulfonate in dispersing clay minerals in coal flotation using deionised water and saline water. Fuel, 142:235-242. DOI:10.1016/j.fuel.2014.10.082.
    [28]

    Ma Y J, Zhao X, Chen X, et al., 2011. An approach to improve the application of acid-insoluble lignin from rice hull in phenol-formaldehyde resin. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 377(1/2/3):284-289. DOI:10.1016/j.colsurfa.2011.01.006.
    [29]

    Mansouri N E E, Pizzi A, Salvado J, 2007. Lignin-based polycondensation resins for wood adhesives. Journal of Applied Polymer Science, 103(3):1690-1699. DOI:10.1002/app.25098.
    [30]

    Matsushita Y, 2015. Conversion of technical lignins to functional materials with retained polymeric properties. Journal of Wood Science, 61(3):230-250. DOI:10.1007/s10086-015- 1470-2.
    [31]

    Matsushita Y, Inomata T, Hasegawa T, et al., 2009. Solubilization and functionalization of sulfuric acid lignin generated during bioethanol production from woody biomass. Bioresource Technology, 100(2):1024-1026. DOI:10.1016/j.biortech. 2008.07.026.
    [32]

    Matsushita Y, Iwatsuki A, Yasuda S, 2004a. Application of cationic polymer prepared from sulfuric acid lignin as a retention aid for usual rosin sizes to neutral papermaking. Journal of Wood Science, 50(6):540-544. DOI:10.1007/s10086-003-0602-2.
    [33]

    Matsushita Y, Kakehi A, Miyawaki S, et al., 2004b. Formation and chemical structures of acid-soluble lignin Ⅱ:reaction of aromatic nuclei model compounds with xylan in the presence of a counterpart for condensation, and behavior of lignin model compounds with guaiacyl and syringyl nuclei in 72% sulfuric acid. Journal of Wood Science, 50(2):136-141. DOI:10.1007/s10086-003-0543-9.
    [34]

    Matsushita Y, Yasuda S, 2005. Preparation and evaluation of lignosulfonates as a dispersant for gypsum paste from acid hydrolysis lignin. Bioresource Technology, 96(4):465-470. DOI:10.1016/j.biortech.2004.05.023.
    [35]

    Pang Y X, Qiu X Q, Yang D J, et al., 2008. Influence of oxidation, hydroxymethylation and sulfomethylation on the physicochemical properties of calcium lignosulfonate. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 312(2/3):154-159. DOI:10.1016/j.colsurfa.2007.06.044.
    [36]

    Rajalaxmi D, Jiang N, Leslie G, et al., 2010. Synthesis of novel water-soluble sulfonated cellulose. Carbohydrate Research, 345(2):284-290. DOI:10.1016/j.carres.2009.09.037.
    [37]

    Saito T, Brown R H, Hunt M A, et al., 2012. Turning renewable resources into value-added polymer:development of lignin- based thermoplastic. Green Chemistry, 14(12):3295. DOI:10.1039/c2gc35933b.
    [38]

    Xie H L, Shi T J, 2011. Sulfonation of liquefied wood and suspension property of its product in seed coating agent. Journal of Dispersion Science and Technology, 32(8):1213- 1218. DOI:10.1080/01932691.2010.505534.
    [39]

    Yasuda S, Hamaguchi E, Matsushita Y, et al., 1998. Ready chemical conversion of acid hydrolysis lignin into water- soluble. Journal of Wood Science, 44:126-124.
    [40]

    Yu G, Li B, Wang H S, et al., 2013. Preparation of concrete superplasticizer by oxidation-sulfomethylation of sodium lignosulfonate. BioResources, 8(1):1055-1063. DOI:10.15376/biores.8.1.1055-1063.
    [41]

    Zhang Q, Wang D, Bei Y, et al., 2013. Lignin-alginate polyampholyte. BioResources, 8(3):3544-3555.
    [42]

    Zoumpoulakis L, Simitzis J, 2001. Ion exchange resins from phenol/formaldehyde resin-modified lignin. Polymer Interna-tional, 50(3):277-283. DOI:10.1002/pi.621.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Article Metrics

Article views(42) PDF downloads(12) Cited by()

Proportional views

Sulfonation of Hydroxymethylated Lignin and Its Application

    Corresponding author: Pedram FATEHI, pfatehi@lakeheadu.ca
  • Department of Chemical Engineering and Green Processes Research Centre, Lakehead University, 955 Oliver Road, Thunder Bay P7 B5 E1, Canada
Fund Project:  The authors thank Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Research Chairs, Canada Foundation for Innovation, Ontario Research Fund and Northern Ontario Heritage Fund Corporation programs for supporting this research.

Abstract: To valorize kraft lignin, hydroxymethylation and sulfonation were applied on this under-utilized, but vastly available, material. The hydroxymethylation pretreatment was conducted as means to improve the reactivity of lignin. The sulfonation of hydroxymethylated kraft lignin was investigated by sulfuric acid and sodium sulfite treatments under various conditions. The modified lignin samples were characterized for their charge density, solubility, elemental components, and molecular weights. The results showed that the hydroxymethylation facilitated the sulfonation by sodium sulfite, yielding a product (SSH-lignin) with the charge density of -1.2 meq/g and water solubility of 10 g/L under the conditions of H2SO3/lignin molar ratio of 0.49 mol/mol, 95℃ and 3 h. On the other hand, hydroxymethylation hindered the sulfonation of lignin by sulfuric acid, yielding a product (SAH-lignin) with the charge density of -0.46 meq/g and solubility of 0.9 g/L under the conditions of H2SO4/lignin molar ratio of 14.8 mol/mol, 80℃ and 1 h. The SSH-lignin had a high adsorption on kaolinite (17 mg/g) at a lignin concentration of 40 g/L. The sulfonated lignins were also found to be effective coagulant for the cationic dye ethyl violet.

Reference (42)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return